BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15389483)

  • 21. Soil bioremediation by cyclodextrins. A review.
    Morillo E; Madrid F; Lara-Moreno A; Villaverde J
    Int J Pharm; 2020 Dec; 591():119943. PubMed ID: 33065221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of hydroxypropyl-beta-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil.
    Stroud JL; Tzima M; Paton GI; Semple KT
    Environ Pollut; 2009 Oct; 157(10):2678-83. PubMed ID: 19501437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting.
    Antizar-Ladislao B; Beck AJ; Spanova K; Lopez-Real J; Russell NJ
    J Hazard Mater; 2007 Jun; 144(1-2):340-7. PubMed ID: 17113229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable decontamination of an actual-site aged PCB-polluted soil through a biosurfactant-based washing followed by a photocatalytic treatment.
    Occulti F; Roda GC; Berselli S; Fava F
    Biotechnol Bioeng; 2008 Apr; 99(6):1525-34. PubMed ID: 17969134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced biodegradation of transformer oil in soils with cyclodextrin--from the laboratory to the field.
    Molnár M; Leitgib L; Gruiz K; Fenyvesi E; Szaniszló N; Szejtli J; Fava F
    Biodegradation; 2005 Mar; 16(2):159-68. PubMed ID: 15730026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Humic acid toxicity in biologically treated soil contaminated with polycyclic aromatic hydrocarbons and pentachlorophenol.
    Nieman JK; Sims RC; Sorensen DL; McLean JE
    Arch Environ Contam Toxicol; 2005 Oct; 49(3):283-9. PubMed ID: 16170453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of phenanthrene by the indigenous microbial biomass in a zinc amended soil.
    Wong KW; Toh BA; Ting YP; Obbard JP
    Lett Appl Microbiol; 2005; 40(1):50-5. PubMed ID: 15613002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area.
    Chen Y; Tang X; Cheema SA; Liu W; Shen C
    J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology.
    Villaverde J; Posada-Baquero R; Rubio-Bellido M; Laiz L; Saiz-Jimenez C; Sanchez-Trujillo MA; Morillo E
    J Agric Food Chem; 2012 Oct; 60(40):9941-7. PubMed ID: 22985203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Arbuscular mycorrhizal bioremediation and its mechanisms of organic pollutants-contaminated soils].
    Li Q; Ling W; Gao Y; Li F; Xiong W
    Ying Yong Sheng Tai Xue Bao; 2006 Nov; 17(11):2217-21. PubMed ID: 17269356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated anaerobic/aerobic bioprocess for the remediation of chlorinated phenol-contaminated soil and groundwater.
    Ehlers GA; Rose PD
    Water Environ Res; 2006 Jul; 78(7):701-9. PubMed ID: 16929640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil.
    Wang S; Guo S; Li F; Yang X; Teng F; Wang J
    Sci Rep; 2016 Apr; 6():23833. PubMed ID: 27032838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of PAHs at high concentrations in a soil washing solution containing TX-100 via simultaneous sorption and biodegradation processes by immobilized degrading bacteria in PVA-SA hydrogel beads.
    Chen W; Zhang H; Zhang M; Shen X; Zhang X; Wu F; Hu J; Wang B; Wang X
    J Hazard Mater; 2021 May; 410():124533. PubMed ID: 33223315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil.
    Doick KJ; Clasper PJ; Urmann K; Semple KT
    Environ Pollut; 2006 Nov; 144(1):345-54. PubMed ID: 16564118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Humic coverage index" as a determining factor governing strain-specific hydrocarbon availability to contaminant-degrading bacteria in soils.
    Bogan BW; Sullivan WR; Cruz KH; Paterek JR; Ravikovitch PI; Neimark AV
    Environ Sci Technol; 2003 Nov; 37(22):5168-74. PubMed ID: 14655703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applicability of non-exhaustive extraction procedures with Tenax and HPCD.
    Bernhardt C; Derz K; Kördel W; Terytze K
    J Hazard Mater; 2013 Oct; 261():711-7. PubMed ID: 23298441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates.
    Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D
    J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial community changes during the bioremediation of creosote-contaminated soil.
    Grant RJ; Muckian LM; Clipson NJ; Doyle EM
    Lett Appl Microbiol; 2007 Mar; 44(3):293-300. PubMed ID: 17309507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review.
    Lipczynska-Kochany E
    Chemosphere; 2018 Jul; 202():420-437. PubMed ID: 29579677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Advances in studies on the effect of surfactant on bioavailability of polycylcic aromatic hydrocarbons (PAHs) in soil].
    Jiang X; Jing X; Gao X; Ou Z
    Ying Yong Sheng Tai Xue Bao; 2002 Sep; 13(9):1179-86. PubMed ID: 12561188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.