These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15389483)

  • 61. Cyclodextrin-enabled green environmental biotechnologies.
    Fenyvesi É; Sohajda T
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20085-20097. PubMed ID: 35064478
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficient PFAS removal from contaminated soils through combined washing and adsorption in soil effluents.
    Usman M; Chaudhary A; Hanna K
    J Hazard Mater; 2024 Jul; 476():135118. PubMed ID: 38981229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Use of exogenous specialised bacteria in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in slurry phase conditions.
    Fava F; Bertin L
    Biotechnol Bioeng; 1999 Jul; 64(2):240-9. PubMed ID: 10397860
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous elution of polycyclic aromatic hydrocarbons and heavy metals from contaminated soil by two amino acids derived from beta-cyclodextrins.
    Yang C; Zeng Q; Wang Y; Liao B; Sun J; Shi H; Chen X
    J Environ Sci (China); 2010; 22(12):1910-5. PubMed ID: 21462709
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of rhamnolipids on microorganism characteristics and applications in composting: A review.
    Shao B; Liu Z; Zhong H; Zeng G; Liu G; Yu M; Liu Y; Yang X; Li Z; Fang Z; Zhang J; Zhao C
    Microbiol Res; 2017 Jul; 200():33-44. PubMed ID: 28527762
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrolysis with diamond anodes of the effluents of a combined soil washing - ZVI dechlorination process.
    Carvalho de Almeida C; Muñoz-Morales M; Sáez C; Cañizares P; Martínez-Huitle CA; Rodrigo MA
    J Hazard Mater; 2019 May; 369():577-583. PubMed ID: 30818122
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cyclodextrin-based strategies for removal of persistent organic pollutants.
    Wacławek S; Krawczyk K; Silvestri D; Padil VVT; Řezanka M; Černík M; Jaroniec M
    Adv Colloid Interface Sci; 2022 Dec; 310():102807. PubMed ID: 36384078
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cultural and environmental factors affecting the longevity of Escherichia coli in Histosols.
    Tate RL
    Appl Environ Microbiol; 1978 May; 35(5):925-9. PubMed ID: 350158
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Suitability of humic substances recovered from sewage sludge to remedy soils from a former As mining area - a novel approach.
    Gusiatin ZM; Kulikowska D; Klik B
    J Hazard Mater; 2017 Sep; 338():160-166. PubMed ID: 28570874
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes.
    Bonal NS; Paramkusam BR; Basudhar PK
    J Hazard Mater; 2018 Jun; 351():54-62. PubMed ID: 29510327
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds.
    Zeng Z; Liu Y; Zhong H; Xiao R; Zeng G; Liu Z; Cheng M; Lai C; Zhang C; Liu G; Qin L
    Sci Total Environ; 2018 Sep; 634():1-11. PubMed ID: 29625372
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Two glycolipids increase in the bioremediation of halogenated aromatic compounds.
    Nakata K
    J Biosci Bioeng; 2000; 89(6):577-81. PubMed ID: 16232801
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bioremediation. A challenging application of biochemical engineering principles.
    Erickson LE; McDonald JP; Fan LT; Dhawan S; Tuitemwong P
    Ann N Y Acad Sci; 1992 Oct; 665():404-11. PubMed ID: 1416619
    [No Abstract]   [Full Text] [Related]  

  • 74. An aerobic soil microorganism which decomposes blood group substances. I. Metabolic and immunochemical studies.
    GILMORE TE; HOWE C
    J Bacteriol; 1959 Dec; 78(6):805-13. PubMed ID: 13850160
    [No Abstract]   [Full Text] [Related]  

  • 75. AN AEROBIC SOIL MICROORGANISM WHICH DECOMPOSES BLOOD GROUP SUBSTANCES II. : Effect of Cell-Free Extracts on Blood Group Substances.
    Gilmore TE; Howe C
    J Bacteriol; 1959 Dec; 78(6):814-20. PubMed ID: 16561847
    [No Abstract]   [Full Text] [Related]  

  • 76. Enhanced washing of polycyclic aromatic hydrocarbons from contaminated soils by the empowered surfactant properties of de novo O-alkylated humic matter.
    Piccolo A; Drosos M; Nuzzo A; Cozzolino V; Scopa A
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16995-17004. PubMed ID: 38329672
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Plant-bacteria partnerships for the remediation of persistent organic pollutants.
    Arslan M; Imran A; Khan QM; Afzal M
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4322-4336. PubMed ID: 26139403
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons.
    D'Annibale A; Rosetto F; Leonardi V; Federici F; Petruccioli M
    Appl Environ Microbiol; 2006 Jan; 72(1):28-36. PubMed ID: 16391021
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of cyclodextrins, humic substances, and rhamnolipids on the washing of a historically contaminated soil and on the aerobic bioremediation of the resulting effluents.
    Berselli S; Milone G; Canepa P; Di Gioia D; Fava F
    Biotechnol Bioeng; 2004 Oct; 88(1):111-20. PubMed ID: 15389483
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development and assessment of an innovative soil-washing process based on the use of cholic acid-derivatives as pollutant-mobilizing agents.
    Berselli S; Benitez E; Fedi S; Zannoni D; Medici A; Marchetti L; Fava F
    Biotechnol Bioeng; 2006 Mar; 93(4):761-70. PubMed ID: 16304676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.