These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15389506)
1. Is hydroxyapatite cement an alternative for allograft bone chips in bone grafting procedures? A mechanical and histological study in a rabbit cancellous bone defect model. Voor MJ; Arts JJ; Klein SA; Walschot LH; Verdonschot N; Buma P J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):398-407. PubMed ID: 15389506 [TBL] [Abstract][Full Text] [Related]
2. Biological activity of tri-calciumphosphate/hydroxyl-apatite granules mixed with impacted morsellized bone graft. A study in rabbits. Arts JJ; Walschot LH; Verdonschot N; Schreurs BW; Buma P J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):476-85. PubMed ID: 17034003 [TBL] [Abstract][Full Text] [Related]
3. Impacted bone and calcium phosphate cement for repair of femoral head defects: a pilot study. Rijnen WH; Gardeniers JW; Schreurs BW; Buma P Clin Orthop Relat Res; 2007 Jun; 459():216-21. PubMed ID: 17308484 [TBL] [Abstract][Full Text] [Related]
4. Transmission electron microscopic study of interface between bioactive bone cement and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers. Okada Y; Kobayashi M; Fujita H; Katsura Y; Matsuoka H; Takadama H; Kokubo T; Nakamura T J Biomed Mater Res; 1999 Jun; 45(4):277-84. PubMed ID: 10321699 [TBL] [Abstract][Full Text] [Related]
5. Xenograft bone inclusion improves incorporation of hydroxyapatite cement into cancellous defects. Voor MJ; Yoder EM; Burden RL J Orthop Trauma; 2011 Aug; 25(8):483-7. PubMed ID: 21738066 [TBL] [Abstract][Full Text] [Related]
6. No effect of bone morphogenetic protein-7 (OP-1) on the incorporation of impacted bone grafts in a realistic acetabular model. Buma P; Arts JJ; Gardeniers JW; Verdonschot N; Schreurs BW J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):231-9. PubMed ID: 17514667 [TBL] [Abstract][Full Text] [Related]
7. Subchondral defects in caprine femora augmented with in situ setting hydroxyapatite cement, polymethylmethacrylate, or autogenous bone graft: biomechanical and histomorphological analysis after two-years. Welch RD; Berry BH; Crawford K; Zhang H; Zobitz M; Bronson D; Krishnan S J Orthop Res; 2002 May; 20(3):464-72. PubMed ID: 12038619 [TBL] [Abstract][Full Text] [Related]
8. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects. Gosain AK; Riordan PA; Song L; Amarante MT; Kalantarian B; Nagy PG; Wilson CR; Toth JM; McIntyre BL Plast Reconstr Surg; 2004 Oct; 114(5):1155-63; discussion 1164-5. PubMed ID: 15457027 [TBL] [Abstract][Full Text] [Related]
10. Histologic and mechanical evaluation of impacted morcellized cancellous allografts in rabbits: comparison with hydroxyapatite granules. Yano H; Ohashi H; Kadoya Y; Kobayashi A; Yamano Y; Tanabe Y J Arthroplasty; 2000 Aug; 15(5):635-43. PubMed ID: 10960003 [TBL] [Abstract][Full Text] [Related]
11. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement. Kobayashi M; Nakamura T; Shinzato S; Mousa WF; Nishio K; Ohsawa K; Kokubo T; Kikutani T J Biomed Mater Res; 1999 Sep; 46(4):447-57. PubMed ID: 10398005 [TBL] [Abstract][Full Text] [Related]
12. Bioactive bone cement: comparison of AW-GC filler with hydroxyapatite and beta-TCP fillers on mechanical and biological properties. Kobayashi M; Nakamura T; Tamura J; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Dec; 37(3):301-13. PubMed ID: 9368135 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. Ikenaga M; Hardouin P; LemaƮtre J; Andrianjatovo H; Flautre B J Biomed Mater Res; 1998 Apr; 40(1):139-44. PubMed ID: 9511108 [TBL] [Abstract][Full Text] [Related]
14. Correction of skull defects using hydroxyapatite cement (HAC)--evidence derived from animal experiments and clinical experience. Verheggen R; Merten HA Acta Neurochir (Wien); 2001 Sep; 143(9):919-26. PubMed ID: 11685624 [TBL] [Abstract][Full Text] [Related]
15. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Silva RV; Camilli JA; Bertran CA; Moreira NH Int J Oral Maxillofac Surg; 2005 Mar; 34(2):178-84. PubMed ID: 15695048 [TBL] [Abstract][Full Text] [Related]
16. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. Tang PF; Li G; Wang JF; Zheng QJ; Wang Y J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):886-93. PubMed ID: 19353574 [TBL] [Abstract][Full Text] [Related]
17. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model. Walschot LH; Aquarius R; Schreurs BW; Verdonschot N; Buma P J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1483-9. PubMed ID: 22707449 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. Brown GD; Mealey BL; Nummikoski PV; Bifano SL; Waldrop TC J Periodontol; 1998 Feb; 69(2):146-57. PubMed ID: 9526913 [TBL] [Abstract][Full Text] [Related]
19. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model. Zhao YN; Fan JJ; Li ZQ; Liu YW; Wu YP; Liu J Artif Organs; 2017 Feb; 41(2):199-204. PubMed ID: 27401022 [TBL] [Abstract][Full Text] [Related]
20. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model. Sa Y; Yu N; Wolke JGC; Chanchareonsook N; Goh BT; Wang Y; Yang F; Jansen JA Tissue Eng Part C Methods; 2017 May; 23(5):262-273. PubMed ID: 28372521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]