These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 153897)

  • 41. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels.
    Lin BR; Gierasch LM; Jiang C; Tai PC
    J Membr Biol; 2006; 214(2):103-13. PubMed ID: 17530158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy coupling to active transport in anaerobically grown mutants of Escherichia Coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1976 Mar; 154(3):731-4. PubMed ID: 133673
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energetics of glycylglycine transport in Escherichia coli.
    Cowell JL
    J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP.
    Stewart LM; Bakker EP; Booth IR
    J Gen Microbiol; 1985 Jan; 131(1):77-85. PubMed ID: 3886836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adenosine 5'-triphosphate synthesis in Escherichia coli submitted to a microsecond electric pulse.
    Teissié J
    Biochemistry; 1986 Jan; 25(2):368-73. PubMed ID: 3082356
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thallous ion is accumulated by potassium transport systems in Escherichia coli.
    Damper PD; Epstein W; Rosen BP; Sorensen EN
    Biochemistry; 1979 Sep; 18(19):4165-9. PubMed ID: 385048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli.
    Laimins LA; Rhoads DB; Altendorf K; Epstein W
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3216-9. PubMed ID: 356049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation.
    Prezioso G; Hong JS; Kerwar GK; Kaback HR
    Arch Biochem Biophys; 1973 Feb; 154(2):575-82. PubMed ID: 4266260
    [No Abstract]   [Full Text] [Related]  

  • 50. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity.
    Leblanc G; Le Grimellec C
    Biochim Biophys Acta; 1979 Jun; 554(1):168-79. PubMed ID: 36912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Active transport of thallous ions by Streptococcus lactis.
    Kashket ER
    J Biol Chem; 1979 Sep; 254(17):8129-31. PubMed ID: 468811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of escherichia coli virus T1. ATP-mediated discrimination of gene expression.
    Wagner EF; Schweiger M
    J Biol Chem; 1980 Jan; 255(2):540-2. PubMed ID: 6444298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of Escherichia coli virus T1. The role of the proton-motive force.
    Wagner EF; Ponta H; Schweiger M
    J Biol Chem; 1980 Jan; 255(2):534-9. PubMed ID: 6985893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Reversibility of the proton-potassium pump and synthesis of ATP in E. coli].
    Martirosov SM; Trchunian AA
    Biofizika; 1983; 28(1):83-6. PubMed ID: 6299398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles.
    Eytan GD; Carlenor E; Rydström J
    J Biol Chem; 1990 Aug; 265(22):12949-54. PubMed ID: 2142942
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stimulation of ATP synthesis by a membrane potential in chloroplasts.
    Schuldiner S; Rottenberg H; Avron M
    Eur J Biochem; 1973 Nov; 39(2):455-62. PubMed ID: 4129992
    [No Abstract]   [Full Text] [Related]  

  • 59. ATP-linked sodium transport in Streptococcus faecalis. I. The sodium circulation.
    Heefner DL; Harold FM
    J Biol Chem; 1980 Dec; 255(23):11396-402. PubMed ID: 6777378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.