These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15389744)

  • 1. Fast fragments: the development of a parallel effective fragment potential method.
    Netzloff HM; Gordon MS
    J Comput Chem; 2004 Nov; 25(15):1926-35. PubMed ID: 15389744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent effects on the electronic transitions of p-nitroaniline: a QM/EFP study.
    Kosenkov D; Slipchenko LV
    J Phys Chem A; 2011 Feb; 115(4):392-401. PubMed ID: 21175204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-induced frequency shifts: configuration interaction singles combined with the effective fragment potential method.
    Arora P; Slipchenko LV; Webb SP; DeFusco A; Gordon MS
    J Phys Chem A; 2010 Jul; 114(25):6742-50. PubMed ID: 20527868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization.
    Slipchenko LV
    J Phys Chem A; 2010 Aug; 114(33):8824-30. PubMed ID: 20504011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradients of the polarization energy in the effective fragment potential method.
    Li H; Netzloff HM; Gordon MS
    J Chem Phys; 2006 Nov; 125(19):194103. PubMed ID: 17129085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic fragmentation method and the effective fragment potential: an efficient method for capturing molecular energies.
    Mullin JM; Roskop LB; Pruitt SR; Collins MA; Gordon MS
    J Phys Chem A; 2009 Sep; 113(37):10040-9. PubMed ID: 19739681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible effective fragment QM/MM method: validation through the challenging tests.
    Nemukhin AV; Grigorenko BL; Topol IA; Burt SK
    J Comput Chem; 2003 Sep; 24(12):1410-20. PubMed ID: 12868106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interface between the universal force field and the effective fragment potential method.
    Zorn D; Lin VS; Pruski M; Gordon MS
    J Phys Chem B; 2008 Oct; 112(40):12753-60. PubMed ID: 18795767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and accurate fragmentation methods.
    Pruitt SR; Bertoni C; Brorsen KR; Gordon MS
    Acc Chem Res; 2014 Sep; 47(9):2786-94. PubMed ID: 24810424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.
    Li H; Gordon MS
    J Chem Phys; 2007 Mar; 126(12):124112. PubMed ID: 17411113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO).
    Fedorov DG; Olson RM; Kitaura K; Gordon MS; Koseki S
    J Comput Chem; 2004 Apr; 25(6):872-80. PubMed ID: 15011259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effects on optical properties of molecules: a combined time-dependent density functional theory/effective fragment potential approach.
    Yoo S; Zahariev F; Sok S; Gordon MS
    J Chem Phys; 2008 Oct; 129(14):144112. PubMed ID: 19045139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the solvation of fluorine and chlorine anions by water.
    Kemp DD; Gordon MS
    J Phys Chem A; 2005 Sep; 109(34):7688-99. PubMed ID: 16834143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Comput Chem; 2007 Jan; 28(2):491-4. PubMed ID: 17186484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.