These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 15389782)
1. Transition of an androgen-dependent human prostate cancer cell line into an androgen-independent subline is associated with increased angiogenesis. Gustavsson H; Welén K; Damber JE Prostate; 2005 Mar; 62(4):364-73. PubMed ID: 15389782 [TBL] [Abstract][Full Text] [Related]
2. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP. Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of angiopoietin-2 and vascular endothelial growth factor in androgen-independent prostate cancer models. Tesan T; Gustavsson H; Welén K; Damber JE BJU Int; 2008 Sep; 102(8):1034-9. PubMed ID: 18489523 [TBL] [Abstract][Full Text] [Related]
4. Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line. Lee SO; Dutt SS; Nadiminty N; Pinder E; Liao H; Gao AC Prostate; 2007 Sep; 67(12):1293-300. PubMed ID: 17626246 [TBL] [Abstract][Full Text] [Related]
5. Androgen withdrawal inhibits tumor growth and is associated with decrease in angiogenesis and VEGF expression in androgen-independent CWR22Rv1 human prostate cancer model. Cheng L; Zhang S; Sweeney CJ; Kao C; Gardner TA; Eble JN Anticancer Res; 2004; 24(4):2135-40. PubMed ID: 15330153 [TBL] [Abstract][Full Text] [Related]
6. Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Lee SO; Pinder E; Chun JY; Lou W; Sun M; Gao AC Prostate; 2008 Jan; 68(1):85-91. PubMed ID: 18008330 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of proliferation and expression of AR/PSA by herbal supplement Equiguard in LNCaP cells cultured in androgen-proficient FBS and androgen-deficient charcoal-stripped FBS is correlated with increased serine-15 phosphorylation of the tumor suppressor gene p53. Lu X; Guo J; Hsieh TC; Wu JM Anticancer Res; 2003; 23(3B):2489-98. PubMed ID: 12894532 [TBL] [Abstract][Full Text] [Related]
8. Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice. DeMiguel F; Lee SO; Lou W; Xiao X; Pflug BR; Nelson JB; Gao AC Prostate; 2002 Jul; 52(2):123-9. PubMed ID: 12111703 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of caspases by cytokine response modifier A blocks androgen ablation-mediated prostate cancer cell death in vivo. Srikanth S; Kraft AS Cancer Res; 1998 Feb; 58(4):834-9. PubMed ID: 9485043 [TBL] [Abstract][Full Text] [Related]
10. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Tuxhorn JA; McAlhany SJ; Dang TD; Ayala GE; Rowley DR Cancer Res; 2002 Jun; 62(11):3298-307. PubMed ID: 12036948 [TBL] [Abstract][Full Text] [Related]
11. Androgens repress the expression of the angiogenesis inhibitor thrombospondin-1 in normal and neoplastic prostate. Colombel M; Filleur S; Fournier P; Merle C; Guglielmi J; Courtin A; Degeorges A; Serre CM; Bouvier R; Clézardin P; Cabon F Cancer Res; 2005 Jan; 65(1):300-8. PubMed ID: 15665307 [TBL] [Abstract][Full Text] [Related]
12. Rap2 regulates androgen sensitivity in human prostate cancer cells. Bigler D; Gioeli D; Conaway MR; Weber MJ; Theodorescu D Prostate; 2007 Oct; 67(14):1590-9. PubMed ID: 17918750 [TBL] [Abstract][Full Text] [Related]
13. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Unni E; Sun S; Nan B; McPhaul MJ; Cheskis B; Mancini MA; Marcelli M Cancer Res; 2004 Oct; 64(19):7156-68. PubMed ID: 15466214 [TBL] [Abstract][Full Text] [Related]
14. Equiguard suppresses androgen-dependent LNCaP prostate cancer cell proliferation by targeting cell cycle control via down regulation of the retinoblastoma protein Rb and induction of apoptosis via the release of cytochrome c. Lu X; Hsieh TC; Wu JM Int J Oncol; 2004 Dec; 25(6):1801-7. PubMed ID: 15547720 [TBL] [Abstract][Full Text] [Related]
15. Constitutive activation of the 41- and 43-kDa mitogen-activated protein (MAP) kinases in the progression of prostate cancer to an androgen-independent state. Oka H; Chatani Y; Kohno M; Kawakita M; Ogawa O Int J Urol; 2005 Oct; 12(10):899-905. PubMed ID: 16323984 [TBL] [Abstract][Full Text] [Related]
16. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Berenguer C; Boudouresque F; Dussert C; Daniel L; Muracciole X; Grino M; Rossi D; Mabrouk K; Figarella-Branger D; Martin PM; Ouafik L Oncogene; 2008 Jan; 27(4):506-18. PubMed ID: 17637748 [TBL] [Abstract][Full Text] [Related]
17. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Lee SO; Chun JY; Nadiminty N; Lou W; Gao AC Prostate; 2007 May; 67(7):764-73. PubMed ID: 17373716 [TBL] [Abstract][Full Text] [Related]
18. Pericyte coverage decreases invasion of tumour cells into blood vessels in prostate cancer xenografts. Welén K; Jennbacken K; Tesan T; Damber JE Prostate Cancer Prostatic Dis; 2009; 12(1):41-6. PubMed ID: 18521102 [TBL] [Abstract][Full Text] [Related]
19. Prostate cancer progression into androgen independency is associated with alterations in cell adhesion and invasivity. Jennbacken K; Gustavsson H; Welén K; Vallbo C; Damber JE Prostate; 2006 Nov; 66(15):1631-40. PubMed ID: 16927303 [TBL] [Abstract][Full Text] [Related]
20. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Murthy S; Agoulnik IU; Weigel NL Prostate; 2005 Sep; 64(4):362-72. PubMed ID: 15754350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]