These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 15389855)
1. Proteomics by FTICR mass spectrometry: top down and bottom up. Bogdanov B; Smith RD Mass Spectrom Rev; 2005; 24(2):168-200. PubMed ID: 15389855 [TBL] [Abstract][Full Text] [Related]
2. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035 [TBL] [Abstract][Full Text] [Related]
4. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
5. FTICR mass spectrometry for qualitative and quantitative bioanalyses. Page JS; Masselon CD; Smith RD Curr Opin Biotechnol; 2004 Feb; 15(1):3-11. PubMed ID: 15102459 [TBL] [Abstract][Full Text] [Related]
6. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements. Shen Y; Strittmatter EF; Zhang R; Metz TO; Moore RJ; Li F; Udseth HR; Smith RD; Unger KK; Kumar D; Lubda D Anal Chem; 2005 Dec; 77(23):7763-73. PubMed ID: 16316187 [TBL] [Abstract][Full Text] [Related]
7. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications. Shah B; Kozlowski RL; Han J; Borchers CH Methods Mol Biol; 2011; 773():259-303. PubMed ID: 21898261 [TBL] [Abstract][Full Text] [Related]
8. Peptide and protein characterization by high-rate electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry. Tsybin YO; Ramström M; Witt M; Baykut G; Håkansson P J Mass Spectrom; 2004 Jul; 39(7):719-29. PubMed ID: 15282750 [TBL] [Abstract][Full Text] [Related]
9. Analysis of food proteins and peptides by mass spectrometry-based techniques. Mamone G; Picariello G; Caira S; Addeo F; Ferranti P J Chromatogr A; 2009 Oct; 1216(43):7130-42. PubMed ID: 19699482 [TBL] [Abstract][Full Text] [Related]
10. Protein identification by peptide mass fingerprinting and peptide sequence tagging with alternating scans of nano-liquid chromatography/infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Kosaka T; Yoneyama-Takazawa T; Kubota K; Matsuoka T; Sato I; Sasaki T; Tanaka Y J Mass Spectrom; 2003 Dec; 38(12):1281-7. PubMed ID: 14696210 [TBL] [Abstract][Full Text] [Related]
11. Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics. Shen Y; Smith RD Expert Rev Proteomics; 2005 Jun; 2(3):431-47. PubMed ID: 16000088 [TBL] [Abstract][Full Text] [Related]
12. An integrated top-down and bottom-up strategy for characterization of protein isoforms and modifications. Wu S; Tolić N; Tian Z; Robinson EW; Paša-Tolić L Methods Mol Biol; 2011; 694():291-304. PubMed ID: 21082441 [TBL] [Abstract][Full Text] [Related]
13. Quantitation of target proteins and post-translational modifications in affinity-based proteomics approaches. Kiernan UA Expert Rev Proteomics; 2007 Jun; 4(3):421-8. PubMed ID: 17552926 [TBL] [Abstract][Full Text] [Related]
14. Orbitrap mass analyzer--overview and applications in proteomics. Scigelova M; Makarov A Proteomics; 2006 Sep; 6 Suppl 2():16-21. PubMed ID: 17031791 [TBL] [Abstract][Full Text] [Related]
15. Relationship between sample loading amount and peptide identification and its effects on quantitative proteomics. Liu K; Zhang J; Wang J; Zhao L; Peng X; Jia W; Ying W; Zhu Y; Xie H; He F; Qian X Anal Chem; 2009 Feb; 81(4):1307-14. PubMed ID: 19146458 [TBL] [Abstract][Full Text] [Related]
16. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175 [TBL] [Abstract][Full Text] [Related]
18. High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Qian WJ; Camp DG; Smith RD Expert Rev Proteomics; 2004 Jun; 1(1):87-95. PubMed ID: 15966802 [TBL] [Abstract][Full Text] [Related]
19. Electron-capture dissociation tandem mass spectrometry. Zubarev RA Curr Opin Biotechnol; 2004 Feb; 15(1):12-6. PubMed ID: 15102460 [TBL] [Abstract][Full Text] [Related]
20. 'Top down' protein characterization via tandem mass spectrometry. Reid GE; McLuckey SA J Mass Spectrom; 2002 Jul; 37(7):663-75. PubMed ID: 12124999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]