These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15390081)
1. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Sirotnak FM; She Y; Khokhar NZ; Hayes P; Gerald W; Scher HI Mol Carcinog; 2004 Nov; 41(3):150-63. PubMed ID: 15390081 [TBL] [Abstract][Full Text] [Related]
2. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537 [TBL] [Abstract][Full Text] [Related]
3. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Gregory CW; Hamil KG; Kim D; Hall SH; Pretlow TG; Mohler JL; French FS Cancer Res; 1998 Dec; 58(24):5718-24. PubMed ID: 9865729 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Tepper CG; Boucher DL; Ryan PE; Ma AH; Xia L; Lee LF; Pretlow TG; Kung HJ Cancer Res; 2002 Nov; 62(22):6606-14. PubMed ID: 12438256 [TBL] [Abstract][Full Text] [Related]
5. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142 [TBL] [Abstract][Full Text] [Related]
6. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Stanbrough M; Bubley GJ; Ross K; Golub TR; Rubin MA; Penning TM; Febbo PG; Balk SP Cancer Res; 2006 Mar; 66(5):2815-25. PubMed ID: 16510604 [TBL] [Abstract][Full Text] [Related]
7. Relaxin drives Wnt signaling through upregulation of PCDHY in prostate cancer. Thompson VC; Hurtado-Coll A; Turbin D; Fazli L; Lehman ML; Gleave ME; Nelson CC Prostate; 2010 Jul; 70(10):1134-45. PubMed ID: 20503398 [TBL] [Abstract][Full Text] [Related]
8. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082 [TBL] [Abstract][Full Text] [Related]
9. Evolution of the androgen receptor pathway during progression of prostate cancer. Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422 [TBL] [Abstract][Full Text] [Related]
10. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538 [TBL] [Abstract][Full Text] [Related]
11. ACTR/AIB1/SRC-3 and androgen receptor control prostate cancer cell proliferation and tumor growth through direct control of cell cycle genes. Zou JX; Zhong Z; Shi XB; Tepper CG; deVere White RW; Kung HJ; Chen H Prostate; 2006 Oct; 66(14):1474-86. PubMed ID: 16921507 [TBL] [Abstract][Full Text] [Related]
12. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Tamura K; Furihata M; Tsunoda T; Ashida S; Takata R; Obara W; Yoshioka H; Daigo Y; Nasu Y; Kumon H; Konaka H; Namiki M; Tozawa K; Kohri K; Tanji N; Yokoyama M; Shimazui T; Akaza H; Mizutani Y; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H Cancer Res; 2007 Jun; 67(11):5117-25. PubMed ID: 17545589 [TBL] [Abstract][Full Text] [Related]
13. Altered corepressor SMRT expression and recruitment to target genes as a mechanism that change the response to androgens in prostate cancer progression. Godoy AS; Sotomayor PC; Villagran M; Yacoub R; Montecinos VP; McNerney EM; Moser M; Foster BA; Onate SA Biochem Biophys Res Commun; 2012 Jul; 423(3):564-70. PubMed ID: 22695118 [TBL] [Abstract][Full Text] [Related]
14. Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Chen Q; Watson JT; Marengo SR; Decker KS; Coleman I; Nelson PS; Sikes RA Cancer Lett; 2006 Dec; 244(2):274-88. PubMed ID: 16500022 [TBL] [Abstract][Full Text] [Related]
15. Studies with CWR22 xenografts in nude mice suggest that ZD1839 may have a role in the treatment of both androgen-dependent and androgen-independent human prostate cancer. Sirotnak FM; She Y; Lee F; Chen J; Scher HI Clin Cancer Res; 2002 Dec; 8(12):3870-6. PubMed ID: 12473602 [TBL] [Abstract][Full Text] [Related]
16. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Kikugawa T; Kinugasa Y; Shiraishi K; Nanba D; Nakashiro K; Tanji N; Yokoyama M; Higashiyama S Prostate; 2006 Jul; 66(10):1092-9. PubMed ID: 16637071 [TBL] [Abstract][Full Text] [Related]
17. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Gao J; Arnold JT; Isaacs JT Cancer Res; 2001 Jul; 61(13):5038-44. PubMed ID: 11431338 [TBL] [Abstract][Full Text] [Related]
18. Identification of differentially expressed genes associated with androgen-independent growth of prostate cancer. Mohler JL; Morris TL; Ford OH; Alvey RF; Sakamoto C; Gregory CW Prostate; 2002 Jun; 51(4):247-55. PubMed ID: 11987153 [TBL] [Abstract][Full Text] [Related]
20. GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Narita S; So A; Ettinger S; Hayashi N; Muramaki M; Fazli L; Kim Y; Gleave ME Clin Cancer Res; 2008 Sep; 14(18):5769-77. PubMed ID: 18794086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]