These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15390139)

  • 1. Polymeric nanoparticles from rapid expansion of supercritical fluid solution.
    Sun YP; Meziani MJ; Pathak P; Qu L
    Chemistry; 2005 Feb; 11(5):1366-73. PubMed ID: 15390139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV.
    Sane A; Thies MC
    J Phys Chem B; 2005 Oct; 109(42):19688-95. PubMed ID: 16853546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation.
    Pathak P; Prasad GL; Meziani MJ; Joudeh AA; Sun YP
    Langmuir; 2007 Feb; 23(5):2674-9. PubMed ID: 17243738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution.
    Meziani MJ; Sun YP
    J Am Chem Soc; 2003 Jul; 125(26):8015-8. PubMed ID: 12823024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of supercritical solution rapid expansion technology in preparation of fine pharmacal particles].
    Zhang ZY; Li HL; Lei ZJ
    Zhongguo Zhong Yao Za Zhi; 2006 Dec; 31(23):1933-6. PubMed ID: 17348181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation of nanopaticles of SCF-CO2 extraction of Magnolia officinalis].
    He S; Zhang S; Lei Z; Zhang Z
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):390-3. PubMed ID: 19459296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical fluid technology for enhanced drug delivery.
    Pathak P; Meziani MJ; Sun YP
    Expert Opin Drug Deliv; 2005 Jul; 2(4):747-61. PubMed ID: 16296799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs.
    Young TJ; Mawson S; Johnston KP; Henriksen IB; Pace GW; Mishra AK
    Biotechnol Prog; 2000; 16(3):402-7. PubMed ID: 10835242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of semi-conducting polymeric nanoparticles by supercritical carbon dioxide RESOLV process.
    Ganapathy HS; Kim JH; Hong SS; Lim KT
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4707-10. PubMed ID: 19049090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications.
    Byrappa K; Ohara S; Adschiri T
    Adv Drug Deliv Rev; 2008 Feb; 60(3):299-327. PubMed ID: 18192071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercritical fluid technology: a promising approach in pharmaceutical research.
    Girotra P; Singh SK; Nagpal K
    Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation of microparticles of SCF-CO2 extraction of Salvia miltiorrhiza by RESS].
    He S; Lei ZJ; Huang DY; Zhang ZY
    Zhongguo Zhong Yao Za Zhi; 2008 Sep; 33(18):2064-6. PubMed ID: 19160784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution.
    Türk M; Lietzow R
    AAPS PharmSciTech; 2004 Sep; 5(4):e56. PubMed ID: 15760053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.