BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15390266)

  • 1. Exploring peptide energy landscapes: a test of force fields and implicit solvent models.
    Steinbach PJ
    Proteins; 2004 Dec; 57(4):665-77. PubMed ID: 15390266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.
    Olson MA; Feig M; Brooks CL
    J Comput Chem; 2008 Apr; 29(5):820-31. PubMed ID: 17876760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.
    Yeh IC; Lee MS; Olson MA
    J Phys Chem B; 2008 Nov; 112(47):15064-73. PubMed ID: 18959439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent.
    Rodriguez A; Mokoema P; Corcho F; Bisetty K; Perez JJ
    J Phys Chem B; 2011 Feb; 115(6):1440-9. PubMed ID: 21254763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of force-field dependency in free energy landscapes of peptide conformations by quantum chemical calculations.
    Ono S; Kuroda M; Higo J; Nakajima N; Nakamura H
    J Comput Chem; 2002 Mar; 23(4):470-6. PubMed ID: 11908083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A test of implicit solvent models on the folding simulation of the GB1 peptide.
    Shao Q; Yang L; Gao YQ
    J Chem Phys; 2009 May; 130(19):195104. PubMed ID: 19466868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of end-to-end loop formation of the penta-peptide Cys-Ala-Gly-Gln-Trp in implicit solvents.
    Yeh IC; Wallqvist A
    J Phys Chem B; 2009 Sep; 113(36):12382-90. PubMed ID: 19685925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H; Elstner M; Hermans J
    Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide and Protein Structure Prediction with a Simplified Continuum Solvent Model.
    Steinbach PJ
    J Phys Chem B; 2018 Dec; 122(49):11355-11362. PubMed ID: 30230838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis.
    Tan C; Yang L; Luo R
    J Phys Chem B; 2006 Sep; 110(37):18680-7. PubMed ID: 16970499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding.
    Zhang Y; Kihara D; Skolnick J
    Proteins; 2002 Aug; 48(2):192-201. PubMed ID: 12112688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-atom Monte Carlo approach to protein-peptide binding.
    Staneva I; Wallin S
    J Mol Biol; 2009 Nov; 393(5):1118-28. PubMed ID: 19733177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct folding simulation of alpha-helices and beta-hairpins based on a single all-atom force field with an implicit solvation model.
    Jang S; Kim E; Pak Y
    Proteins; 2007 Jan; 66(1):53-60. PubMed ID: 17063490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.