These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1539171)

  • 1. Influence of dietary protein levels on the fate of methylmercury and glutathione metabolism in mice.
    Adachi T; Yasutake A; Hirayama K
    Toxicology; 1992; 72(1):17-26. PubMed ID: 1539171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dietary levels of protein and sulfur amino acids on the fate of methylmercury in mice.
    Adachi T; Yasutake A; Hirayama K
    Toxicology; 1994 Nov; 93(2-3):225-34. PubMed ID: 7974516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of dietary protein levels on the acute toxicity of methylmercury in mice.
    Adachi T; Yasutake A; Eto K; Hirayama K
    Toxicology; 1996 Aug; 112(1):11-7. PubMed ID: 8792844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sex hormones on the fate of methylmercury and on glutathione metabolism in mice.
    Hirayama K; Yasutake A; Inoue M
    Biochem Pharmacol; 1987 Jun; 36(12):1919-24. PubMed ID: 3593401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute effects of methylmercury on hepatic and renal glutathione metabolisms in mice.
    Yasutake A; Hirayama K
    Arch Toxicol; 1994; 68(8):512-6. PubMed ID: 7802592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced elimination of tissue methylmercury in Parachlorella beijerinckii-fed mice.
    Uchikawa T; Kumamoto Y; Maruyama I; Kumamoto S; Ando Y; Yasutake A
    J Toxicol Sci; 2011 Jan; 36(1):121-6. PubMed ID: 21297350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic effects of methylmercury in rats. I. Biochemical aspects.
    Yasutake A; Nakano A; Miyamoto K; Eto K
    Tohoku J Exp Med; 1997 Jul; 182(3):185-96. PubMed ID: 9362101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary fats altered nephrotoxicity profile of methylmercury in rats.
    Jin X; Lok E; Caldwell D; Mueller R; Kapal K; Liston V; Kubow S; Chan HM; Mehta R
    J Appl Toxicol; 2009 Mar; 29(2):126-40. PubMed ID: 18821721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inhibition of gamma-glutamyltranspeptidase on biliary and urinary excretion of glutathione-derived thiols and methylmercury.
    Gregus Z; Stein AF; Klaassen CD
    J Pharmacol Exp Ther; 1987 Jul; 242(1):27-32. PubMed ID: 2886637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary Fructooligosaccharides Reduce Mercury Levels in the Brain of Mice Exposed to Methylmercury.
    Nagano M; Fujimura M; Tada Y; Seko Y
    Biol Pharm Bull; 2021; 44(4):522-527. PubMed ID: 33790104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating effects of dietary fats on methylmercury toxicity and distribution in rats.
    Jin X; Lok E; Bondy G; Caldwell D; Mueller R; Kapal K; Armstrong C; Taylor M; Kubow S; Mehta R; Chan HM
    Toxicology; 2007 Jan; 230(1):22-44. PubMed ID: 17184894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of urinary excretion of methylmercury in mice.
    Yasutake A; Hirayama K; Inoue M
    Arch Toxicol; 1989; 63(6):479-83. PubMed ID: 2575893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio).
    Amlund H; Lundebye AK; Boyle D; Ellingsen S
    Aquat Toxicol; 2015 Jan; 158():211-7. PubMed ID: 25481787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dietary methylmercury and seleno-methionine on Sacramento splittail larvae.
    Deng DF; Teh FC; Teh SJ
    Sci Total Environ; 2008 Dec; 407(1):197-203. PubMed ID: 18817945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice.
    Havarinasab S; Björn E; Nielsen JB; Hultman P
    Toxicol Appl Pharmacol; 2007 May; 221(1):21-8. PubMed ID: 17399758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between gamma-glutamyl transpeptidase and Hg levels in Se/Hg antagonism in mouse liver and kidney.
    Di Simplicio P; Gorelli M; Ciuffreda P; Leonzio C
    Pharmacol Res; 1990; 22(4):515-26. PubMed ID: 1976248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular secretion and reabsorption of mercury compounds in mouse kidney.
    Tanaka-Kagawa T; Naganuma A; Imura N
    J Pharmacol Exp Ther; 1993 Feb; 264(2):776-82. PubMed ID: 8094752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorella suppresses methylmercury transfer to the fetus in pregnant mice.
    Uchikawa T; Maruyama I; Kumamoto S; Ando Y; Yasutake A
    J Toxicol Sci; 2011 Oct; 36(5):675-80. PubMed ID: 22008543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary and tissue selenium in relation to methylmercury toxicity.
    Ralston NV; Ralston CR; Blackwell JL; Raymond LJ
    Neurotoxicology; 2008 Sep; 29(5):802-11. PubMed ID: 18761370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone.
    Gao X; Wu J; Dong Z; Hua C; Hu H; Mei C
    Br J Nutr; 2010 Feb; 103(4):608-16. PubMed ID: 19878616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.