These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15395988)

  • 1. [The degradation of Na pyruvate and glucose to aerobic disease by suspensions of Cl. Sporogenes and Cl. Saccharobutyricum].
    NISMAN B
    C R Hebd Seances Acad Sci; 1949 Sep; 229(13):633-5. PubMed ID: 15395988
    [No Abstract]   [Full Text] [Related]  

  • 2. [Inhibiting action of glucose and sodium pyruvate on the release of ammonia in cultures of Cl. sporogenes].
    RAYNAUD M; ROSENBERG AJ; GROS F
    Bull Soc Chim Biol (Paris); 1947; 29(4-6):373-5. PubMed ID: 18900126
    [No Abstract]   [Full Text] [Related]  

  • 3. Coenzyme A as a co-factor of the pyruvate dehydrogenase system of Cl. saccharobutyricum.
    NISMAN B; MAGER J
    Nature; 1952 Apr; 169(4304):709-11. PubMed ID: 14956994
    [No Abstract]   [Full Text] [Related]  

  • 4. [Influence of l-, d-inositols and a few pyronic derivatives on cultures of Cl. Saccharobutyricum, inhibited by malonate].
    ROSENBERG AJ
    C R Seances Soc Biol Fil; 1948 Apr; 142(7-8):443. PubMed ID: 18880621
    [No Abstract]   [Full Text] [Related]  

  • 5. [Glucose metabolism in Clostridium sporogenes and Clostridium sticklandii bacteria].
    Golovchenko NP; Belokopytov BF; Akimenko VK
    Mikrobiologiia; 1983; 52(6):869-74. PubMed ID: 6230511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [PHOSPHOROCLASTIC DEGRADATION OF PYRUVATE BY CLOSTRIDIUM SACCHAROBUTYRICUM. DEMONSTRATION OF THE INTERVENTION OF A PTERIN COFACTOR IN THE DEGRADATION OF PYRUVATE].
    DELAVIER-KLUTCHKO C
    Biochim Biophys Acta; 1963 Dec; 78():569-76. PubMed ID: 14089437
    [No Abstract]   [Full Text] [Related]  

  • 7. Clostridium sporogenes delivers interleukin-12 to hypoxic tumours, producing antitumour activity without significant toxicity.
    Zhang YL; Lü R; Chang ZS; Zhang WQ; Wang QB; Ding SY; Zhao W
    Lett Appl Microbiol; 2014 Dec; 59(6):580-6. PubMed ID: 25163827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Enzymatic mechanism of the coupled desamination reaction in the obligate anaerobic bacteria of the Cl. sporogenes group].
    NISMAN B; VINET G
    Ann Inst Pasteur (Paris); 1950 Jan; 78(1):115-32. PubMed ID: 15413821
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies of the metabolism of the strict anaerobes (genus: Clostridium): Dehydrogenation reactions by suspensions of Cl. sporogenes.
    Kocholaty W; Hoogerheide JC
    Biochem J; 1938 Mar; 32(3):437-48. PubMed ID: 16746637
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of the strict anaerobes (genus: Clostridium): Reduction of amino-acids with gaseous hydrogen by suspensions of Cl. sporogenes.
    Hoogerheide JC; Kocholaty W
    Biochem J; 1938 Jun; 32(6):949-57. PubMed ID: 16746719
    [No Abstract]   [Full Text] [Related]  

  • 11. Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures.
    Panikov NS; Sizova MV; Ros D; Christodoulatos C; Balas W; Nicolich S
    Biodegradation; 2007 Jun; 18(3):317-32. PubMed ID: 17091356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiology of Clostridium sporogenes NCIB 8053 growing in defined media.
    Lovitt RW; Kell DB; Morris JG
    J Appl Bacteriol; 1987 Jan; 62(1):81-92. PubMed ID: 3571035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoleucine synthesis by Clostridium sporogenes from propionate or alpha-methylbutyrate.
    Monticello DJ; Hadioetomo RS; Costilow RN
    J Gen Microbiol; 1984 Feb; 130(2):309-18. PubMed ID: 6726176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies in the metabolism of the strict anaerobes (genus Clostridium): The oxidation of alanine by Cl. sporogenes. IV. The reduction of glycine by Cl. sporogenes.
    Stickland LH
    Biochem J; 1935 Apr; 29(4):889-98. PubMed ID: 16745741
    [No Abstract]   [Full Text] [Related]  

  • 15. [On some electronic aspects of the action of certain metallic cations on the growth of aerobic bacteria (Escherichia coli) and anaerobic bacteria (Clostridium sporogenes)].
    FAGUET M; GOUDOT A
    Ann Inst Pasteur (Paris); 1961 Dec; 101():860-8. PubMed ID: 13891299
    [No Abstract]   [Full Text] [Related]  

  • 16. The effects of various anions and cations on the regulation of pyruvate dehydrogenase complex activity from pig kidney cortex.
    Pawelczyk T; Easom RA; Olson MS
    Biochem J; 1988 Aug; 253(3):819-25. PubMed ID: 3178738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic and abiotic degradation of CL-20 and RDX in soils.
    Crocker FH; Thompson KT; Szecsody JE; Fredrickson HL
    J Environ Qual; 2005; 34(6):2208-16. PubMed ID: 16275722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct transformation of fumarate to oxaloacetate, without intermediate formation of malate, by Clostridium saccharobutyricum, strain GR 4.
    Cohen-Bazire G; Cohen GN
    Biochem J; 1949; 45(1):41-5. PubMed ID: 16748587
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolic requirements for anaerobic active Cl and Na transport in the bullfrog cornea.
    Reinach PS; Schoen HF; Candia OA
    Am J Physiol; 1979 May; 236(5):C268-76. PubMed ID: 312606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intervention of biotin in the clastic reaction of pyruvate by Clostridium saccharobutyricum].
    DELAVIER-KLUTCHKO C
    C R Hebd Seances Acad Sci; 1961 Mar; 252():1681-3. PubMed ID: 13721509
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.