BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1539738)

  • 1. Recovery metabolism of trout white muscle: role of mitochondria.
    Moyes CD; Schulte PM; Hochachka PW
    Am J Physiol; 1992 Feb; 262(2 Pt 2):R295-304. PubMed ID: 1539738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating metabolic pathways in post-exercise recovery of white muscle.
    Schulte PM; Moyes CD; Hochachka PW
    J Exp Biol; 1992 May; 166():181-95. PubMed ID: 1602273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of pyruvate dehydrogenase activity in intact cardiac mitochondria. Regulation of the inactivation and activation of the dehydrogenase.
    Chiang PK; Sacktor B
    J Biol Chem; 1975 May; 250(9):3399-408. PubMed ID: 123530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA; Thomas BJ; Shukla SP; Sacktor B
    Arch Biochem Biophys; 1984 Nov; 234(2):382-93. PubMed ID: 6497378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of anaerobic ATP-generating pathways in trout fast-twitch skeletal muscle.
    Dobson GP; Parkhouse WS; Hochachka PW
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R186-94. PubMed ID: 3605383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).
    Richards JG; Heigenhauser GJ; Wood CM
    J Comp Physiol B; 2003 Aug; 173(6):463-74. PubMed ID: 12851779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism.
    Wang Y; Heigenhauser GJ; Wood CM
    J Exp Biol; 1994 Oct; 195():227-58. PubMed ID: 7964413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid oxidation fuels recovery from exhaustive exercise in white muscle of rainbow trout.
    Richards JG; Heigenhauser GJ; Wood CM
    Am J Physiol Regul Integr Comp Physiol; 2002 Jan; 282(1):R89-99. PubMed ID: 11742827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate utilization during graded aerobic exercise in rainbow trout.
    Richards JG; Mercado AJ; Clayton CA; Heigenhauser GJ; Wood CM
    J Exp Biol; 2002 Jul; 205(Pt 14):2067-77. PubMed ID: 12089210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions.
    Kraffe E; Marty Y; Guderley H
    J Exp Biol; 2007 Jan; 210(Pt 1):149-65. PubMed ID: 17170158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of energy provision in rainbow trout during exercise.
    Parkhouse WS; Dobson GP; Hochachka PW
    Am J Physiol; 1988 Feb; 254(2 Pt 2):R302-9. PubMed ID: 3344838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of high energy phosphates implicates post-exercise mortality in carp and trout; an in vivo 31P-NMR study.
    van Ginneken V; Coldenhoff K; Boot R; Hollander J; Lefeber F; van den Thillart G
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jan; 149(1):98-108. PubMed ID: 18055239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some properties of pyruvate and 2-oxoglutarate oxidation by blowfly flight-muscle mitochondria.
    Hansford RG
    Biochem J; 1972 Mar; 127(1):271-83. PubMed ID: 4342212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature and control of the tricarboxylate cycle in beetle flight muscle.
    Hansford RG; Johnson RN
    Biochem J; 1975 Jun; 148(3):389-401. PubMed ID: 1200985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise.
    Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K
    J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue intracellular acid-base status and the fate of lactate after exhaustive exercise in the rainbow trout.
    Milligan CL; Wood CM
    J Exp Biol; 1986 Jul; 123():123-44. PubMed ID: 3746191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans.
    Putman CT; Jones NL; Lands LC; Bragg TM; Hollidge-Horvat MG; Heigenhauser GJ
    Am J Physiol; 1995 Sep; 269(3 Pt 1):E458-68. PubMed ID: 7573423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.
    Kemp GJ; Taylor DJ; Radda GK
    NMR Biomed; 1993; 6(1):66-72. PubMed ID: 8457428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man.
    Harris RC; Hultman E; Kaijser L; Nordesjö LO
    Scand J Clin Lab Invest; 1975 Jan; 35(1):87-95. PubMed ID: 1129596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.