These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1539978)

  • 1. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill.
    Button DK; Robertson BR; McIntosh D; Jüttner F
    Appl Environ Microbiol; 1992 Jan; 58(1):243-51. PubMed ID: 1539978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolved hydrocarbons and related microflora in a fjordal seaport: sources, sinks, concentrations, and kinetics.
    Button DK; Robertson BR; Craig KS
    Appl Environ Microbiol; 1981 Oct; 42(4):708-19. PubMed ID: 16345870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UAF radiorespirometric protocol for assessing hydrocarbon mineralization potential in environmental samples.
    Brown EJ; Resnick SM; Rebstock C; Luong HV; Lindstrom J
    Biodegradation; 1991; 2(2):121-7. PubMed ID: 1368153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the potential activity of hydrocarbon-degrading bacteria.
    Walker JD; Colwell RR
    Appl Environ Microbiol; 1976 Feb; 31(2):189-97. PubMed ID: 999271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk of weathered residual Exxon Valdez oil to pink salmon embryos in Prince William Sound.
    Brannon EL; Collins KM; Cronin MA; Moulton LL; Parker KR; Wilson W
    Environ Toxicol Chem; 2007 Apr; 26(4):780-6. PubMed ID: 17447564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters.
    Sun X; Kostka JE
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cessation of oil exposure in harlequin ducks after the Exxon Valdez oil spill: Cytochrome P4501A biomarker evidence.
    Esler D; Ballachey BE; Bowen L; Miles AK; Dickson RD; Henderson JD
    Environ Toxicol Chem; 2017 May; 36(5):1294-1300. PubMed ID: 27764895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beach geomorphic factors for the persistence of subsurface oil from the Exxon Valdez spill in Alaska.
    Xia Y; Boufadel MC
    Environ Monit Assess; 2011 Dec; 183(1-4):5-21. PubMed ID: 21336484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Evolution of hydrocarbons and bacterial activity in the marine sediments contaminated by crude oil overflow and treated].
    Bodennec G; Desmarquest JP; Jensen B; Kantin R
    Int J Environ Anal Chem; 1987; 29(3):153-78. PubMed ID: 3596891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbon levels in mussels from Prince William Sound, Alaska, USA, document the return to baseline conditions.
    Boehm PD; Page DS; Brown JS; Neff JM; Burns WA
    Environ Toxicol Chem; 2004 Dec; 23(12):2916-29. PubMed ID: 15648767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence and biodegradation of spilled residual fuel oil on an estuarine beach.
    Pierce RH; Cundell AM; Traxler RW
    Appl Microbiol; 1975 May; 29(5):646-52. PubMed ID: 1147603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments.
    Tecon R; Beggah S; Czechowska K; Sentchilo V; Chronopoulou PM; McGenity TJ; van der Meer JR
    Environ Sci Technol; 2010 Feb; 44(3):1049-55. PubMed ID: 20000678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimate of oil persisting on the beaches of Prince William Sound 12 years after the Exxon Valdez oil spill.
    Short JW; Lindeberg MR; Harris PM; Maselko JM; Pella JJ; Rice SD
    Environ Sci Technol; 2004 Jan; 38(1):19-25. PubMed ID: 14740712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bioremediation of oil spills in the sea.
    Ron EZ; Rosenberg E
    Curr Opin Biotechnol; 2014 Jun; 27():191-4. PubMed ID: 24657912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments.
    Sotsky JB; Greer CW; Atlas RM
    Can J Microbiol; 1994 Nov; 40(11):981-5. PubMed ID: 7804909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long term monitoring for oil in the Exxon Valdez spill region.
    Payne JR; Driskell WB; Short JW; Larsen ML
    Mar Pollut Bull; 2008 Dec; 56(12):2067-81. PubMed ID: 18835610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Assessment of Current Risks to Harlequin Ducks in Prince William Sound, Alaska, from the
    Harwell MA; Gentile JH; Parker KR; Murphy SM; Day RH; Bence AE; Neff JM; Wiens JA
    Hum Ecol Risk Assess; 2012 Mar; 18(2):261-328. PubMed ID: 23723680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill.
    Marty GD; Hoffmann A; Okihiro MS; Hepler K; Hanes D
    Mar Environ Res; 2003 Dec; 56(5):569-84. PubMed ID: 12927739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hydrocarbon-oxidizing microflora of uncontaminated seawater].
    Il'inskiĭ VB; Gusev MV; Koronelli TV
    Mikrobiologiia; 1979; 48(2):346-50. PubMed ID: 440168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable.
    Deepthike HU; Tecon R; Van Kooten G; Van der Meer JR; Harms H; Wells M; Short J
    Environ Sci Technol; 2009 Aug; 43(15):5864-70. PubMed ID: 19731689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.