BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1539995)

  • 1. Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk.
    Bruinenberg PG; Vos P; De Vos WM
    Appl Environ Microbiol; 1992 Jan; 58(1):78-84. PubMed ID: 1539995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase.
    de Vos WM; Vos P; de Haard H; Boerrigter I
    Gene; 1989 Dec; 85(1):169-76. PubMed ID: 2515994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and partial sequencing of the proteinase gene complex from Lactococcus lactis subsp. lactis UC317.
    Law J; Vos P; Hayes F; Daly C; de Vos WM; Fitzgerald G
    J Gen Microbiol; 1992 Apr; 138(4):709-18. PubMed ID: 1588305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal stabilization of the proteinase genes in Lactococcus lactis.
    Leenhouts KJ; Gietema J; Kok J; Venema G
    Appl Environ Microbiol; 1991 Sep; 57(9):2568-75. PubMed ID: 1768129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plasmid-encoded lactococcal envelope-associated proteinase is encoded by a chromosomal gene in Lactococcus lactis subsp. cremoris BC101.
    Nissen-Meyer J; Lillehaug D; Nes IF
    Appl Environ Microbiol; 1992 Feb; 58(2):750-3. PubMed ID: 1610200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of a proteinase gene from Lactococcus lactis subsp. cremoris H2 and construction of a new lactococcal vector pFX1.
    Xu FF; Pearce LE; Yu PL
    Arch Microbiol; 1990; 154(1):99-104. PubMed ID: 2118753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casitone-mediated expression of the prtP and prtM genes in Lactococcus lactis subsp. lactis BGIS29.
    Miladinov N; Kuipers OP; Topisirovic L
    Arch Microbiol; 2001 Dec; 177(1):54-61. PubMed ID: 11797045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of plasmid-mediated oligopeptide transport system in lactococci: another reason for slow milk coagulation.
    Yu W; Gillies K; Kondo JK; Broadbent JR; McKay LL
    Plasmid; 1996 May; 35(3):145-55. PubMed ID: 8812781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope.
    Vos P; van Asseldonk M; van Jeveren F; Siezen R; Simons G; de Vos WM
    J Bacteriol; 1989 May; 171(5):2795-802. PubMed ID: 2496115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varying influence of the autolysin, N-acetyl muramidase, and the cell envelope proteinase on the rate of autolysis of six commercial Lactococcus lactis cheese starter bacteria grown in milk.
    Govindasamy-Lucey S; Gopal PK; Sullivan PA; Pillidge CJ
    J Dairy Res; 2000 Nov; 67(4):585-96. PubMed ID: 11131071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of lactococcal starter proteinases to proteolysis in cheddar cheese.
    Law J; Fitzgerald GF; Uniacke-Lowe T; Daly C; Fox PF
    J Dairy Sci; 1993 Sep; 76(9):2455-67. PubMed ID: 8227650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between proteolytic strains of Lactococcus lactis influenced by different types of proteinase during growth in milk.
    Flambard B; Richard J; Juillard V
    Appl Environ Microbiol; 1997 Jun; 63(6):2131-5. PubMed ID: 9172329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequence and characterization of the cell envelope proteinase plasmid in Lactococcus lactis subsp. cremoris HP.
    Christensson C; Pillidge CJ; Ward LJ; O'Toole PW
    J Appl Microbiol; 2001 Aug; 91(2):334-43. PubMed ID: 11473599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic enzyme activity in lactococci grown in different pretreated milk media.
    Meijer WC; Hugenholtz J
    J Appl Microbiol; 1997 Aug; 83(2):139-46. PubMed ID: 9281817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring suppression subtractive hybridization (SSH) for discriminating Lactococcus lactis ssp. cremoris SK11 and ATCC 19257 in mixed culture based on the expression of strain-specific genes.
    Ndoye B; Lessard MH; LaPointe G; Roy D
    J Appl Microbiol; 2011 Feb; 110(2):499-512. PubMed ID: 21143356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production in lactococcus lactis SK11.
    Marugg JD; van Kranenburg R; Laverman P; Rutten GA; de Vos WM
    J Bacteriol; 1996 Mar; 178(6):1525-31. PubMed ID: 8626277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and activities of Lactococcus lactis in milk enriched with low mineral retentate powders.
    St-Gelais D; Roy D; Haché S
    J Dairy Sci; 1992 Sep; 75(9):2344-52. PubMed ID: 1452841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the domain of the Lactobacillus delbrueckii subsp. bulgaricus cell surface proteinase PrtB involved in attachment to the cell wall after heterologous expression of the prtB gene in Lactococcus lactis.
    Germond JE; Delley M; Gilbert C; Atlan D
    Appl Environ Microbiol; 2003 Jun; 69(6):3377-84. PubMed ID: 12788739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of transcription initiation and termination signals of the proteinase genes of Lactococcus lactis Wg2 and enhancement of proteolysis in L. lactis.
    van der Vossen JM; Kodde J; Haandrikman AJ; Venema G; Kok J
    Appl Environ Microbiol; 1992 Sep; 58(9):3142-9. PubMed ID: 1444428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteinase activity in slow lactic acid-producing variants of Streptococcus lactis.
    Pearce LE; Skipper NA; Jarvis BD
    Appl Microbiol; 1974 May; 27(5):933-7. PubMed ID: 4208513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.