These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1539997)
1. Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. van Glyswyk NO; Wejdemar K; Kulander K Appl Environ Microbiol; 1992 Jan; 58(1):99-105. PubMed ID: 1539997 [TBL] [Abstract][Full Text] [Related]
2. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets. Salter DN; Daneshvar K; Smith RH Br J Nutr; 1979 Jan; 41(1):197-209. PubMed ID: 420753 [TBL] [Abstract][Full Text] [Related]
3. Identity and interactions of rumen microbes associated with dietary sulfate-induced polioencephalomalacia in cattle. Cummings BA; Caldwell DR; Gould DH; Hamar DW Am J Vet Res; 1995 Oct; 56(10):1384-9. PubMed ID: 8928959 [TBL] [Abstract][Full Text] [Related]
4. Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids. Blake JS; Salter DN; Smith RH Br J Nutr; 1983 Nov; 50(3):769-82. PubMed ID: 6639932 [TBL] [Abstract][Full Text] [Related]
5. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Min BR; Attwood GT; Reilly K; Sun W; Peters JS; Barry TN; McNabb WC Can J Microbiol; 2002 Oct; 48(10):911-21. PubMed ID: 12489781 [TBL] [Abstract][Full Text] [Related]
6. Growth factor requirements of Ruminococcus flavefaciens isolated from the rumen of cattle fed purified diets. Slyter LL; Weaver JM Appl Microbiol; 1969 May; 17(5):737-41. PubMed ID: 5785957 [TBL] [Abstract][Full Text] [Related]
7. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen. Atasoglu C; Valdés C; Newbold CJ; Wallace RJ Br J Nutr; 1999 Apr; 81(4):307-14. PubMed ID: 10999018 [TBL] [Abstract][Full Text] [Related]
8. [Changes in the amino acid levels in hydrolysates of bacteria adhering to the rumen in sheep during feeding with high and low nitrogen diets]. Legáth J Vet Med (Praha); 1992; 37(5-6):293-305. PubMed ID: 1413391 [TBL] [Abstract][Full Text] [Related]
9. Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source. Fessenden SW; Hackmann TJ; Ross DA; Block E; Foskolos A; Van Amburgh ME J Dairy Sci; 2019 Apr; 102(4):3036-3052. PubMed ID: 30660423 [TBL] [Abstract][Full Text] [Related]
10. Effect of diet on amino and nucleic acids of rumen bacteria and protozoa. Arambel MJ; Bartley EE; Dufva GS; Nagaraja TG; Dayton AD J Dairy Sci; 1982 Nov; 65(11):2095-101. PubMed ID: 6185549 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. Bento CB; de Azevedo AC; Detmann E; Mantovani HC BMC Microbiol; 2015 Feb; 15():28. PubMed ID: 25888186 [TBL] [Abstract][Full Text] [Related]
12. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism? Cantalapiedra-Hijar G; Fouillet H; Huneau JF; Fanchone A; Doreau M; Nozière P; Ortigues-Marty I Animal; 2016 Feb; 10(2):221-9. PubMed ID: 26776494 [TBL] [Abstract][Full Text] [Related]
13. Ammonia-hyperproducing bacteria from New Zealand ruminants. Attwood GT; Klieve AV; Ouwerkerk D; Patel BK Appl Environ Microbiol; 1998 May; 64(5):1796-804. PubMed ID: 9572953 [TBL] [Abstract][Full Text] [Related]
14. Sulfur influences on rumen microorganisms in vitro and in sheep and calves. Slyter LL; Chalupa W; Oltjen RR; Weaver JM J Anim Sci; 1986 Dec; 63(6):1949-59. PubMed ID: 3818468 [TBL] [Abstract][Full Text] [Related]
15. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Genthner BR; Davis CL; Bryant MP Appl Environ Microbiol; 1981 Jul; 42(1):12-9. PubMed ID: 6791591 [TBL] [Abstract][Full Text] [Related]
16. Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep. Belenguer A; Toral PG; Frutos P; Hervás G J Dairy Sci; 2010 Jul; 93(7):3275-86. PubMed ID: 20630243 [TBL] [Abstract][Full Text] [Related]
17. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. Russell JB; Sniffen CJ; Van Soest PJ J Dairy Sci; 1983 Apr; 66(4):763-75. PubMed ID: 6853798 [TBL] [Abstract][Full Text] [Related]
18. Identification and enumeration of oleic acid and linoleic acid hydrating bacteria in the rumen of sheep and cows. Hudson JA; Cai Y; Corner RJ; Morvan B; Joblin KN J Appl Microbiol; 2000 Feb; 88(2):286-92. PubMed ID: 10735997 [TBL] [Abstract][Full Text] [Related]
19. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium. Kanegasaki S; Takahashi H J Bacteriol; 1967 Jan; 93(1):456-63. PubMed ID: 6020417 [TBL] [Abstract][Full Text] [Related]
20. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis. Saro C; Ranilla MJ; Carro MD J Anim Sci; 2012 Dec; 90(12):4487-94. PubMed ID: 23100580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]