These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15400358)

  • 1. The proteins of green leaves; purine, pentose, total phosphorus and acid-labile phosphorus of the cytoplasmic proteins of spinach leaves.
    WILDMAN SG; CAMPBELL JM; BONNER J
    Arch Biochem; 1949 Nov; 24(1):9-24. PubMed ID: 15400358
    [No Abstract]   [Full Text] [Related]  

  • 2. The proteins of green leaves; isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins.
    WILDMAN SG; BONNER J
    Arch Biochem; 1947 Aug; 14(3):381-413. PubMed ID: 20260832
    [No Abstract]   [Full Text] [Related]  

  • 3. The proteins of green leaves. V. A cytoplasmic nucleoprotein from spinach and tobacco leaves.
    EGGMAN L; SINGER SJ; WILDMAN SG
    J Biol Chem; 1953 Dec; 205(2):969-83. PubMed ID: 13129275
    [No Abstract]   [Full Text] [Related]  

  • 4. The enzymatic conversion of tryptophan to auxin by spinach leaves.
    WILDMAN SG; FERRI MG; BONNER J
    Arch Biochem; 1947 Apr; 13(1):131-44. PubMed ID: 20296071
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L.
    Kamlar M; Rothova O; Salajkova S; Tarkowska D; Drasar P; Kocova M; Harmatha J; Hola D; Kohout L; Macek T
    Steroids; 2015 May; 97():107-12. PubMed ID: 25578736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil.
    Obrador A; Gonzalez D; Alvarez JM
    J Agric Food Chem; 2013 May; 61(20):4692-701. PubMed ID: 23638953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BIOCHEMICAL STUDIES ON PTERIDINES IN PLANTS. I. BIOGENESIS OF FOLIC ACID IN GREEN LEAVES: CONFIRMATION OF ENZYMATIC SYNTHESIS OF FOLATE COMPOUNDS BY THE ENZYME SYSTEM FROM THE SPINACH.
    MITSUDA H; SUZUKI Y; TADERA K; KAWAI F
    J Vitaminol (Kyoto); 1965 Jun; 11():122-38. PubMed ID: 14343318
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymatic mechanisms in the respiration of spinach leaves.
    BONNER J; WILDMAN SG
    Arch Biochem; 1946 Aug; 10():497-518. PubMed ID: 20998015
    [No Abstract]   [Full Text] [Related]  

  • 9. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.).
    Mogren LM; Beacham AM; Reade JP; Monaghan JM
    J Sci Food Agric; 2016 Jul; 96(9):2976-80. PubMed ID: 26381599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial purification of a pyrophosphatase from spinach leaves.
    FORTI G
    Biochim Biophys Acta; 1961 Mar; 48():200-2. PubMed ID: 13700907
    [No Abstract]   [Full Text] [Related]  

  • 11. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.
    Zhu YG; Huang YZ; Hu Y; Liu YX
    Environ Int; 2003 Apr; 29(1):33-7. PubMed ID: 12605934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants.
    Liu XX; Zhou K; Hu Y; Jin R; Lu LL; Jin CW; Lin XY
    J Sci Food Agric; 2015 Aug; 95(10):2105-16. PubMed ID: 25243598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of acetate by cellfree preparations from spinach leaves.
    MUDD JB; McMANUS TT
    J Biol Chem; 1962 Jul; 237():2057-63. PubMed ID: 14476831
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies in valine biosynthesis. V. Characteristics of the purified dihydroxyacid dehydratase from spinach leaves.
    KANAMORI M; WIXOM RL
    J Biol Chem; 1963 Mar; 238():998-1005. PubMed ID: 13962154
    [No Abstract]   [Full Text] [Related]  

  • 15. Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage.
    Bergquist SA; Gertsson UE; Knuthsen P; Olsson ME
    J Agric Food Chem; 2005 Nov; 53(24):9459-64. PubMed ID: 16302762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response?
    Fagioni M; Zolla L
    J Proteome Res; 2009 May; 8(5):2519-29. PubMed ID: 19290619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants.
    Patel J; Singh M; Macarisin D; Sharma M; Shelton D
    Food Microbiol; 2013 Dec; 36(2):388-94. PubMed ID: 24010621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants.
    Sinha S; Mallick S; Misra RK; Singh S; Basant A; Gupta AK
    Chemosphere; 2007 Feb; 67(1):176-87. PubMed ID: 17095039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO₂ extraction.
    Jaime L; Vázquez E; Fornari T; López-Hazas Mdel C; García-Risco MR; Santoyo S; Reglero G
    J Sci Food Agric; 2015 Mar; 95(4):722-9. PubMed ID: 24930815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Popeye strikes again: The deep proteome of spinach leaves.
    Fasoli E; D'Amato A; Kravchuk AV; Boschetti E; Bachi A; Righetti PG
    J Proteomics; 2011 Jan; 74(1):127-36. PubMed ID: 21056706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.