BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1540147)

  • 1. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites.
    Kahana E; Pinder JC; Smith KS; Gratzer WB
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):75-80. PubMed ID: 1540147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability.
    An X; Guo X; Sum H; Morrow J; Gratzer W; Mohandas N
    Biochemistry; 2004 Jan; 43(2):310-5. PubMed ID: 14717584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening.
    Discher DE; Winardi R; Schischmanoff PO; Parra M; Conboy JG; Mohandas N
    J Cell Biol; 1995 Aug; 130(4):897-907. PubMed ID: 7642705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of hemin with protein 4.1 as compared to spectrin and actin.
    Solar I; Shaklai N
    Biochim Biophys Acta; 1989 Aug; 983(2):199-204. PubMed ID: 2758057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and dynamics of tryptophan residues in brain spectrin: novel insight into conformational flexibility.
    Mitra M; Chaudhuri A; Patra M; Mukhopadhyay C; Chakrabarti A; Chattopadhyay A
    J Fluoresc; 2015 May; 25(3):707-17. PubMed ID: 25835748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
    Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence studies of spectrin and its subunits.
    Subbarao NK; MacDonald RC
    Cell Motil Cytoskeleton; 1994; 29(1):72-81. PubMed ID: 7820859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence approach to evaluating conformational changes upon binding of beta-spectrin ankyrin-binding domain mutants with the lipid bilayer.
    Pazdzior G; Chorzalska A; Czogalla A; Borowik T; Sikorski AF; Langner M
    Gen Physiol Biophys; 2009 Sep; 28(3):283-93. PubMed ID: 20037194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
    Chattopadhyay A; Rawat SS; Kelkar DA; Ray S; Chakrabarti A
    Protein Sci; 2003 Nov; 12(11):2389-403. PubMed ID: 14573853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin resonance and biochemical studies of the interaction of the polyamine, spermine, with the skeletal network of proteins in human erythrocyte membranes.
    Wyse JW; Butterfield DA
    Biochim Biophys Acta; 1988 Jun; 941(2):141-9. PubMed ID: 2838078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Kelkar DA; Chattopadhyay A; Chakrabarti A; Bhattacharyya M
    Biopolymers; 2005 Apr; 77(6):325-34. PubMed ID: 15648086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue.
    Pradhan D; Williamson P; Schlegel RA
    Biochemistry; 1991 Aug; 30(31):7754-8. PubMed ID: 1868052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DNA-binding antitumor antibiotic binds to spectrin.
    Majee S; Chakrabarti A
    Biochem Biophys Res Commun; 1995 Jul; 212(2):428-32. PubMed ID: 7626057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoskeletal protein binding kinetics at planar phospholipid membranes.
    Mc Kiernan AE; MacDonald RI; MacDonald RC; Axelrod D
    Biophys J; 1997 Oct; 73(4):1987-98. PubMed ID: 9336194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrin organization and dynamics: new insights.
    Chakrabarti A; Kelkar DA; Chattopadhyay A
    Biosci Rep; 2006 Dec; 26(6):369-86. PubMed ID: 17029004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of the spectrin-like structural element of smooth-muscle alpha-actinin.
    Kahana E; Gratzer WB
    Cell Motil Cytoskeleton; 1991; 20(3):242-8. PubMed ID: 1773450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band 4.1 enhances spectrin binding to phosphatidylserine vesicles.
    Takeshita K; MacDonald RI; MacDonald RC
    Biochem Biophys Res Commun; 1993 Feb; 191(1):165-71. PubMed ID: 8447820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between protein 4.1R and spectrin heterodimers.
    Zhang DQ; Wang YP; Wang WH; Sui XM; Jiang JQ; Jiang XM; Xu ZS; Liu YG
    Mol Med Rep; 2011; 4(4):651-4. PubMed ID: 21468547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites.
    Golan DE; Corbett JD; Korsgren C; Thatte HS; Hayette S; Yawata Y; Cohen CM
    Biophys J; 1996 Mar; 70(3):1534-42. PubMed ID: 8785311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.