These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1540391)

  • 1. Mechanism of neutrophil-induced xanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: evidence of a role for elastase.
    Phan SH; Gannon DE; Ward PA; Karmiol S
    Am J Respir Cell Mol Biol; 1992 Mar; 6(3):270-8. PubMed ID: 1540391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils.
    Phan SH; Gannon DE; Varani J; Ryan US; Ward PA
    Am J Pathol; 1989 Jun; 134(6):1201-11. PubMed ID: 2757114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of xanthine dehydrogenase to xanthine oxidase in bovine carotid artery endothelial cells induced by activated neutrophils: involvement of adhesion molecules.
    Wakabayashi Y; Fujita H; Morita I; Kawaguchi H; Murota S
    Biochim Biophys Acta; 1995 Mar; 1265(2-3):103-9. PubMed ID: 7696338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 12-O-tetradecanoylphorbol-13-acetate-dependent induction of xanthine dehydrogenase and conversion to xanthine oxidase in murine epidermis.
    Reiners JJ; Pence BC; Barcus MC; Cantu AR
    Cancer Res; 1987 Apr; 47(7):1775-9. PubMed ID: 3469021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial cell xanthine oxidase-derived toxic oxygen metabolites contribute to acute lung injury from neutrophil elastase.
    Rodell TC; Cheronis JC; Repine JE
    Chest; 1988 Mar; 93(3 Suppl):146S. PubMed ID: 3342692
    [No Abstract]   [Full Text] [Related]  

  • 6. Protection by deferoxamine from endothelial injury: a possible link with inhibition of intracellular xanthine oxidase.
    Rinaldo JE; Gorry M
    Am J Respir Cell Mol Biol; 1990 Dec; 3(6):525-33. PubMed ID: 2252579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro detection of endothelial cell damage using 2-deoxy-D-3H-glucose: comparison with chromium 51, 3H-leucine, 3H-adenine, and lactate dehydrogenase.
    Andreoli SP; Baehner RL; Bergstein JM
    J Lab Clin Med; 1985 Sep; 106(3):253-61. PubMed ID: 3839830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia.
    Kooij A; Schiller HJ; Schijns M; Van Noorden CJ; Frederiks WM
    Hepatology; 1994 Jun; 19(6):1488-95. PubMed ID: 8188181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of endothelial cell killing by H2O2 or products of activated neutrophils.
    Ward PA
    Am J Med; 1991 Sep; 91(3C):89S-94S. PubMed ID: 1928218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues.
    Engerson TD; McKelvey TG; Rhyne DB; Boggio EB; Snyder SJ; Jones HP
    J Clin Invest; 1987 Jun; 79(6):1564-70. PubMed ID: 3294898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats.
    Thom SR
    Toxicol Appl Pharmacol; 1993 Dec; 123(2):248-56. PubMed ID: 8248932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of neutrophil membrane glycoprotein 150 (Gp-150) in neutrophil-mediated endothelial cell injury in vitro.
    Diener AM; Beatty PG; Ochs HD; Harlan JM
    J Immunol; 1985 Jul; 135(1):537-43. PubMed ID: 3889157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor enhances the neutrophil-dependent increase in endothelial permeability.
    Gibbs LS; Lai L; Malik AB
    J Cell Physiol; 1990 Dec; 145(3):496-500. PubMed ID: 1980275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walker carcinosarcoma cells damage endothelial cells by the generation of reactive oxygen species.
    Shaughnessy SG; Buchanan MR; Turple S; Richardson M; Orr FW
    Am J Pathol; 1989 Apr; 134(4):787-96. PubMed ID: 2705506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of neutrophil elastase and other proteases on porcine aortic endothelial prostaglandin I2 production, adenine nucleotide release, and responses to vasoactive agents.
    LeRoy EC; Ager A; Gordon JL
    J Clin Invest; 1984 Sep; 74(3):1003-10. PubMed ID: 6432844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by nilvadipine of ischemic and carrageenan paw edema as well as of superoxide radical production from neutrophils and xanthine oxidase.
    Oyanagui Y; Sato S
    Arzneimittelforschung; 1991 May; 41(5):469-74. PubMed ID: 1654907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation and inhibition of elastase release from human neutrophil-dependence on the calcium messenger system.
    Kokot K; Teschner M; Schaefer RM; Heidland A
    Miner Electrolyte Metab; 1987; 13(3):189-95. PubMed ID: 3114599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthine oxidase/dehydrogenase release following ischemia in isolated rat hearts.
    Hawes EM; Watts JA
    Am J Cardiovasc Pathol; 1993; 4(4):326-35. PubMed ID: 8305195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acute ethanol administration on the hepatic xanthine dehydrogenase/oxidase system in the rat.
    Sultatos LG
    J Pharmacol Exp Ther; 1988 Sep; 246(3):946-9. PubMed ID: 3166490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia.
    Wiezorek JS; Brown DH; Kupperman DE; Brass CA
    J Clin Invest; 1994 Dec; 94(6):2224-30. PubMed ID: 7989578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.