These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1540639)

  • 1. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism.
    Somogyi B; Norman JA; Punyiczki M; Rosenberg A
    Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling between external viscosity and the intramolecular dynamics of ribonuclease T1: a two-phase model for the quenching of protein fluorescence.
    Somogyi B; Punyiczki M; Hedstrom J; Norman JA; Prendergast FG; Rosenberg A
    Biochim Biophys Acta; 1994 Nov; 1209(1):61-8. PubMed ID: 7947983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gated quenching of intrinsic fluorescence and phosphorescence of globular proteins. An extended model.
    Somogyi B; Norman JA; Rosenberg A
    Biophys J; 1986 Jul; 50(1):55-61. PubMed ID: 3730507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins.
    Eftink MR; Hagaman KA
    Biophys Chem; 1986 Dec; 25(3):277-82. PubMed ID: 3103704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphorescence quenching: distinction between quencher penetration and external quenching mechanisms.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jul; 114(29):9691-7. PubMed ID: 20597520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of a protein matrix revealed by fluorescence quenching.
    Eftink MR; Ghiron CA
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3290-4. PubMed ID: 810800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency domain measurements of the fluorescence lifetime of ribonuclease T1.
    Eftink MR; Ghiron CA
    Biophys J; 1987 Sep; 52(3):467-73. PubMed ID: 3115328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study.
    Chen LX; Longworth JW; Fleming GR
    Biophys J; 1987 Jun; 51(6):865-73. PubMed ID: 3038204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jan; 114(2):1089-93. PubMed ID: 19924836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1998 Jul; 73(1-2):53-75. PubMed ID: 9697300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching by acrylamide and temperature of a fluorescent probe attached to the active site of ribonuclease.
    Jullien M; Garel JR; Merola F; Brochon JC
    Eur Biophys J; 1986; 13(3):131-7. PubMed ID: 3956444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein fluorescence quenching by small molecules: protein penetration versus solvent exposure.
    Calhoun DB; Vanderkooi JM; Holtom GR; Englander SW
    Proteins; 1986 Oct; 1(2):109-15. PubMed ID: 3130621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide.
    Ando T; Asai H
    J Biochem; 1980 Jul; 88(1):255-64. PubMed ID: 7410337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of dynamic quenching of fluorescence in globular proteins.
    Gratton E; Jameson DM; Weber G; Alpert B
    Biophys J; 1984 Apr; 45(4):789-94. PubMed ID: 6722266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.