These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
655 related articles for article (PubMed ID: 1540698)
1. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study. Milburn MP; Jeffrey KR Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631 [TBL] [Abstract][Full Text] [Related]
3. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959 [TBL] [Abstract][Full Text] [Related]
4. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation. Magusin PC; Hemminga MA Biophys J; 1993 Jun; 64(6):1851-60. PubMed ID: 8369411 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of the phosphate group in phospholipid bilayers. A 31P angular dependent nuclear spin relaxation time study. Milburn MP; Jeffrey KR Biophys J; 1989 Sep; 56(3):543-9. PubMed ID: 2790137 [TBL] [Abstract][Full Text] [Related]
6. A detailed analysis of the motions of cholesterol in biological membranes by 2H-NMR relaxation. Dufourc EJ; Smith IC Chem Phys Lipids; 1986 Sep; 41(2):123-35. PubMed ID: 3779887 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of the phosphate group in phospholipid bilayers. A 31P nuclear relaxation time study. Milburn MP; Jeffrey KR Biophys J; 1987 Nov; 52(5):791-9. PubMed ID: 3427188 [TBL] [Abstract][Full Text] [Related]
8. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation. Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634 [TBL] [Abstract][Full Text] [Related]
9. Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations. Moser M; Marsh D; Meier P; Wassmer KH; Kothe G Biophys J; 1989 Jan; 55(1):111-23. PubMed ID: 2539207 [TBL] [Abstract][Full Text] [Related]
10. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Siminovitch DJ; Ruocco MJ; Olejniczak ET; Das Gupta SK; Griffin RG Biophys J; 1988 Sep; 54(3):373-81. PubMed ID: 3207831 [TBL] [Abstract][Full Text] [Related]
11. A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. Tauskela JS; Thompson M Biochim Biophys Acta; 1992 Feb; 1104(1):137-46. PubMed ID: 1550841 [TBL] [Abstract][Full Text] [Related]
12. Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes. Peng ZY; Simplaceanu V; Lowe IJ; Ho C Biophys J; 1988 Jul; 54(1):81-95. PubMed ID: 3416034 [TBL] [Abstract][Full Text] [Related]
13. Effect of calcium on the dynamic behavior of sialylglycerolipids and phospholipids in mixed model membranes. A 2H and 31P NMR study. Fenske DB; Letellier M; Roy R; Smith IC; Jarrell HC Biochemistry; 1991 Oct; 30(43):10542-50. PubMed ID: 1931977 [TBL] [Abstract][Full Text] [Related]
14. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures. Hsieh CH; Wu WG Biophys J; 1995 Jul; 69(1):4-12. PubMed ID: 7669908 [TBL] [Abstract][Full Text] [Related]