BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1540995)

  • 1. Specific interactions of mercury chloride with membranes and other ligands as revealed by mercury-NMR.
    Delnomdedieu M; Boudou A; Georgescauld D; Dufourc EJ
    Chem Biol Interact; 1992 Feb; 81(3):243-69. PubMed ID: 1540995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of inorganic mercury with phospholipid micelles and model membranes. A 31P-NMR study.
    Girault L; Lemaire P; Boudou A; Debouzy JC; Dufourc EJ
    Eur Biophys J; 1996; 24(6):413-21. PubMed ID: 8765713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of inorganic mercury salts with model and red cell membranes: importance of lipid binding sites.
    Delnomdedieu M; Allis JW
    Chem Biol Interact; 1993 Jul; 88(1):71-87. PubMed ID: 8330326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes.
    Hassanin M; Kerek E; Chiu M; Anikovskiy M; Prenner EJ
    J Phys Chem B; 2016 Dec; 120(50):12872-12882. PubMed ID: 27958740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proton nuclear magnetic resonance study of the interaction of mercury with intact human erythrocytes.
    Rabenstein DL; Isab AA
    Biochim Biophys Acta; 1982 Dec; 721(4):374-84. PubMed ID: 7159599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl mercury interactions with phospholipid membranes as reported by fluorescence, 31P and 199Hg NMR.
    Girault L; Boudou A; Drfourc EJ
    Biochim Biophys Acta; 1997 Apr; 1325(2):250-62. PubMed ID: 9168150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-chemical studies of taste reception. IV. Response of individual phospholipid membrane to a variety of chemical stimuli.
    Miyake M; Kamo N; Kurihara K; Kobatake Y
    J Membr Biol; 1975; 22(2):197-209. PubMed ID: 1142421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of danyslated phospholipids and dehydroergosterol into membranes using a phospholipid exchange protein.
    Muczynski KA; Stahl WL
    Biochemistry; 1983 Dec; 22(25):6037-48. PubMed ID: 6318806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotoxicity of mercury as influenced by mercury(II) speciation.
    Farrell RE; Germida JJ; Huang PM
    Appl Environ Microbiol; 1990 Oct; 56(10):3006-16. PubMed ID: 2126698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae.
    Kelly D; Budd K; Lefebvre DD
    Appl Environ Microbiol; 2006 Jan; 72(1):361-7. PubMed ID: 16391065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption characteristics of elemental mercury in mercury chloride solutions.
    Ma Y; Xu H; Qu Z; Yan N; Wang W
    J Environ Sci (China); 2014 Nov; 26(11):2257-65. PubMed ID: 25458680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu(II) complexation by "non-coordinating" N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES buffer).
    Sokołowska M; Bal W
    J Inorg Biochem; 2005 Aug; 99(8):1653-60. PubMed ID: 15993944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury(II) complex formation with glutathione in alkaline aqueous solution.
    Mah V; Jalilehvand F
    J Biol Inorg Chem; 2008 May; 13(4):541-53. PubMed ID: 18224359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury(II) penicillamine complex formation in alkaline aqueous solution.
    Leung BO; Jalilehvand F; Mah V
    Dalton Trans; 2007 Nov; (41):4666-74. PubMed ID: 17940647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cisplatin complexes with phosphatidylserine in membranes.
    Speelmans G; Staffhorst RW; Versluis K; Reedijk J; de Kruijff B
    Biochemistry; 1997 Aug; 36(34):10545-50. PubMed ID: 9265635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible path for mercury in biological systems: the oxidation of metallic mercury by molecular oxygen in aqueous solutions.
    de Magalhães ME; Tubino M
    Sci Total Environ; 1995 Sep; 170(3):229-39. PubMed ID: 7481743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The solvation of the mercury(II) ion-a 199Hg NMR study.
    Maliarik M; Persson I
    Magn Reson Chem; 2005 Oct; 43(10):835-42. PubMed ID: 16025553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramitochondrial distribution and transport of phosphatidylserine and its decarboxylation product, phosphatidylethanolamine. Application of pyrene-labeled species.
    Jasińska R; Zborowski J; Somerharju P
    Biochim Biophys Acta; 1993 Oct; 1152(1):161-70. PubMed ID: 8399295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonolytic desorption of mercury from aluminum oxide: effects of pH, chloride, and organic matter.
    He Z; Traina SJ; Weavers LK
    Environ Sci Technol; 2007 Feb; 41(3):779-84. PubMed ID: 17328183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.