These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1541264)

  • 1. Effect of temperature on the propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. 2. Denaturation and structural stability.
    Ragone R; Facchiano F; Cacciapuoti G; Porcelli M; Colonna G
    Eur J Biochem; 1992 Mar; 204(2):483-90. PubMed ID: 1541264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. 1. Conformational behavior of the oligomeric enzyme in solution.
    Facchiano F; Ragone R; Porcelli M; Cacciapuoti G; Colonna G
    Eur J Biochem; 1992 Mar; 204(2):473-82. PubMed ID: 1541263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of a thermophilic TIM-barrel enzyme: indole-3-glycerol phosphate synthase from the thermophilic archaeon Sulfolobus solfataricus.
    Andreotti G; Cubellis MV; Palo MD; Fessas D; Sannia G; Marino G
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):259-64. PubMed ID: 9173891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular properties of glutamate dehydrogenase from the extreme thermophilic archaebacterium Sulfolobus solfataricus.
    Facchiano AM; Ragone R; Consalvi V; Scandurra R; De Rosa M; Colonna G
    Biochim Biophys Acta; 1995 Sep; 1251(2):170-6. PubMed ID: 7669806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-induced denaturation of beta-glycosidase from the archaeon Sulfolobus solfataricus.
    D'Auria S; Rossi M; Barone G; Catanzano F; Del Vecchio P; Graziano G; Nucci R
    J Biochem; 1996 Aug; 120(2):292-300. PubMed ID: 8889813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phenylalanine 31 in maintaining the conformational stability of ribonuclease P2 from Sulfolobus solfataricus under extreme conditions of temperature and pressure.
    Mombelli E; Afshar M; Fusi P; Mariani M; Tortora P; Connelly JP; Lange R
    Biochemistry; 1997 Jul; 36(29):8733-42. PubMed ID: 9220960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of aspartate aminotransferase from Sulfolobus solfataricus.
    Arnone MI; Birolo L; Pascarella S; Cubellis MV; Bossa F; Sannia G; Marino G
    Protein Eng; 1997 Mar; 10(3):237-48. PubMed ID: 9153089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium.
    Cacciapuoti G; Porcelli M; Cartenì-Farina M; Gambacorta A; Zappia V
    Eur J Biochem; 1986 Dec; 161(2):263-71. PubMed ID: 3096734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus: studies on thermal and guanidine-dependent inactivation.
    Consalvi V; Chiaraluce R; Politi L; Pasquo A; De Rosa M; Scandurra R
    Biochim Biophys Acta; 1993 Oct; 1202(2):207-15. PubMed ID: 8399381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus.
    Villa A; Zecca L; Fusi P; Colombo S; Tedeschi G; Tortora P
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):827-31. PubMed ID: 8240298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkage of proton binding to the thermal unfolding of Sso7d from the hyperthermophilic archaebacterium Sulfolobus solfataricus.
    Graziano G; Catanzano F; Nappa M
    Int J Biol Macromol; 1999 Oct; 26(1):45-53. PubMed ID: 10520955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asn249Tyr substitution at the coenzyme binding domain activates Sulfolobus solfataricus alcohol dehydrogenase and increases its thermal stability.
    Giordano A; Cannio R; La Cara F; Bartolucci S; Rossi M; Raia CA
    Biochemistry; 1999 Mar; 38(10):3043-54. PubMed ID: 10074357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d.
    McCrary BS; Edmondson SP; Shriver JW
    J Mol Biol; 1996 Dec; 264(4):784-805. PubMed ID: 8980686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro.
    Guagliardi A; Cerchia L; Bartolucci S; Rossi M
    Protein Sci; 1994 Sep; 3(9):1436-43. PubMed ID: 7833806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guanidine-induced denaturation of beta-glycosidase from Sulfolobus solfataricus expressed in Escherichia coli.
    Catanzano F; Graziano G; De Paola B; Barone G; D'Auria S; Rossi M; Nucci R
    Biochemistry; 1998 Oct; 37(41):14484-90. PubMed ID: 9772176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization.
    Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G
    Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function studies on beta-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability.
    D'Auria S; Moracci M; Febbraio F; Tanfani F; Nucci R; Rossi M
    Biochimie; 1998 Nov; 80(11):949-57. PubMed ID: 9893955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics and kinetics of unfolding of the thermostable trimeric adenylate kinase from the archaeon Sulfolobus acidocaldarius.
    Backmann J; Schäfer G; Wyns L; Bönisch H
    J Mol Biol; 1998 Dec; 284(3):817-33. PubMed ID: 9826518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.