These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1541268)

  • 1. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase.
    Moreno-Vivián C; Soler G; Castillo F
    Eur J Biochem; 1992 Mar; 204(2):531-7. PubMed ID: 1541268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of L-alanine dehydrogenase of the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Caballero FJ; Cárdenas J; Castillo F
    J Bacteriol; 1989 Jun; 171(6):3205-10. PubMed ID: 2722749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-dependent degradation of nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1992 Feb; 58(2):690-5. PubMed ID: 1610190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1993 Jun; 59(6):1774-8. PubMed ID: 8328801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of L-phenylalanine and L-tyrosine by the phototrophic bacterium Rhodobacter capsulatus.
    Sáez LP; Castillo F; Caballero FJ
    Curr Microbiol; 1999 Jan; 38(1):51-6. PubMed ID: 9841783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein.
    Blasco R; Castillo F; Martínez-Luque M
    FEBS Lett; 1997 Sep; 414(1):45-9. PubMed ID: 9305729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus.
    Roldán MD; Blasco R; Caballero FJ; Castillo F
    Arch Microbiol; 1998 Jan; 169(1):36-42. PubMed ID: 9396833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assimilation of D-malate by Rhodobacter capsulatus E1F1.
    Martínez-Luque M; Castillo F; Blasco R
    Curr Microbiol; 2001 Sep; 43(3):154-7. PubMed ID: 11400062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginase of Bacillus brevis Nagano: purification, properties, and implication in gramicidin S biosynthesis.
    Kanda M; Ohgishi K; Hanawa T; Saito Y
    Arch Biochem Biophys; 1997 Aug; 344(1):37-42. PubMed ID: 9244379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halotolerance of the Phototrophic Bacterium Rhodobacter capsulatus E1F1 Is Dependent on the Nitrogen Source.
    Igeno MI; Del Moral CG; Castillo F; Caballero FJ
    Appl Environ Microbiol; 1995 Aug; 61(8):2970-5. PubMed ID: 16535098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic regulation, biochemical properties and physiological importance of arginase from
    Ide AA; Hernández VM; Medina-Aparicio L; Carcamo-Noriega E; Girard L; Hernández-Lucas I; Dunn MF
    Microbiology (Reading); 2020 May; 166(5):484-497. PubMed ID: 32216867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Olmo-Mira MF; Cabello P; Pino C; Martínez-Luque M; Richardson DJ; Castillo F; Roldán MD; Moreno-Vivián C
    Arch Microbiol; 2006 Oct; 186(4):339-44. PubMed ID: 16897035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Pino C; Olmo-Mira F; Cabello P; Martínez-Luque M; Castillo F; Roldán MD; Moreno-Vivián C
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):127-9. PubMed ID: 16417500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial photodegradation of aminoarenes. Metabolism of 2-amino-4-nitrophenol by Rhodobacter capsulatus.
    Witte CP; Blasco R; Castillo F
    Appl Biochem Biotechnol; 1998 Mar; 69(3):191-200. PubMed ID: 9584054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, properties and alternate substrate specificities of arginase from two different sources: Vigna catjang cotyledon and buffalo liver.
    Dabir S; Dabir P; Somvanshi B
    Int J Biol Sci; 2005; 1(3):114-22. PubMed ID: 16094464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual hepatic mitochondrial arginase in an Indian air-breathing teleost, Heteropneustes fossilis: purification and characterization.
    Srivastava S; Ratha BK
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Feb; 164(2):133-41. PubMed ID: 23195132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and some properties of arginase from human lung.
    Dahlig E; Porembska Z; Mochnacka I
    Acta Biochim Pol; 1975; 22(1):77-85. PubMed ID: 236627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, purification, and characterization of human type II arginase.
    Colleluori DM; Morris SM; Ash DE
    Arch Biochem Biophys; 2001 May; 389(1):135-43. PubMed ID: 11370664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and some properties of human heart arginase.
    Barańczyk-Kuźma A; Skrzypek-Osiecka I; Zalejska M; Porembska Z
    Acta Biochim Pol; 1980; 27(3-4):181-9. PubMed ID: 7269967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxylamine assimilation by Rhodobacter capsulatus E1F1. requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction.
    Cabello P; Pino C; Olmo-Mira MF; Castillo F; Roldán MD; Moreno-Vivián C
    J Biol Chem; 2004 Oct; 279(44):45485-94. PubMed ID: 15322098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.