These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 1541281)
1. The functional role of protein in the organization of bacteriochlorophyll c in chlorosomes of Chloroflexus aurantiacus. Niedermeier G; Scheer H; Feick RG Eur J Biochem; 1992 Mar; 204(2):685-92. PubMed ID: 1541281 [TBL] [Abstract][Full Text] [Related]
2. Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Brune DC; Nozawa T; Blankenship RE Biochemistry; 1987 Dec; 26(26):8644-52. PubMed ID: 3442679 [TBL] [Abstract][Full Text] [Related]
3. Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Sakuragi Y; Frigaard N; Shimada K; Matsuura K Biochim Biophys Acta; 1999 Nov; 1413(3):172-80. PubMed ID: 10556629 [TBL] [Abstract][Full Text] [Related]
4. Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth. Ma YZ; Cox RP; Gillbro T; Miller M Photosynth Res; 1996 Feb; 47(2):157-65. PubMed ID: 24301823 [TBL] [Abstract][Full Text] [Related]
5. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070 [TBL] [Abstract][Full Text] [Related]
6. Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus. Wang Y; Freund DM; Magdaong NM; Urban VS; Frank HA; Hegeman AD; Tang JK Photosynth Res; 2014 Oct; 122(1):69-86. PubMed ID: 24880610 [TBL] [Abstract][Full Text] [Related]
7. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus. Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448 [TBL] [Abstract][Full Text] [Related]
8. Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7 kDa polypeptide. Lehmann RP; Brunisholz RA; Zuber H FEBS Lett; 1994 Apr; 342(3):319-24. PubMed ID: 8150092 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. Feick RG; Fitzpatrick M; Fuller RC J Bacteriol; 1982 May; 150(2):905-15. PubMed ID: 7068536 [TBL] [Abstract][Full Text] [Related]
10. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. Yakovlev AG; Taisova AS; Fetisova ZG Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107 [TBL] [Abstract][Full Text] [Related]
11. Comparison between chlorosomes containing bacteriochlorophyll-c and chlorosomes containing bacteriochlorophyll-d isolated from two substrains of green sulfur photosynthetic bacterium Chlorobium vibrioforme NCIB 8327. Saga Y; Tamiaki H J Photochem Photobiol B; 2004 Jul; 75(1-2):89-97. PubMed ID: 15246355 [TBL] [Abstract][Full Text] [Related]
12. The effect of detergent on the structure and composition of chlorosomes isolated from Chloroflexus aurantiacus. Miller M; Simpson D; Redlinger TE Photosynth Res; 1993 Mar; 35(3):275-83. PubMed ID: 24318757 [TBL] [Abstract][Full Text] [Related]
13. Circular dichroism of green bacterial chlorosomes. Brune DC; Gerola PD; Olson JM Photosynth Res; 1990 Jun; 24(3):253-63. PubMed ID: 24420078 [TBL] [Abstract][Full Text] [Related]
15. Femtosecond Exciton Relaxation in Chlorosomes of the Photosynthetic Green Bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Biochemistry (Mosc); 2023 May; 88(5):704-715. PubMed ID: 37331716 [TBL] [Abstract][Full Text] [Related]
16. Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Bryant DA; Vassilieva EV; Frigaard NU; Li H Biochemistry; 2002 Dec; 41(48):14403-11. PubMed ID: 12450407 [TBL] [Abstract][Full Text] [Related]
17. Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus. Shibata Y; Saga Y; Tamiaki H; Itoh S Biochemistry; 2007 Jun; 46(23):7062-8. PubMed ID: 17503774 [TBL] [Abstract][Full Text] [Related]
18. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria. Yakovlev AG; Taisova AS; Fetisova ZG Biochemistry (Mosc); 2023 Dec; 88(12):2084-2093. PubMed ID: 38462452 [TBL] [Abstract][Full Text] [Related]
19. Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. van Noort PI; Zhu Y; LoBrutto R; Blankenship RE Biophys J; 1997 Jan; 72(1):316-25. PubMed ID: 8994616 [TBL] [Abstract][Full Text] [Related]
20. Temperature shift effect on the Chlorobaculum tepidum chlorosomes. Tang JK; Xu Y; Muhlmann GM; Zare F; Khin Y; Tam SW Photosynth Res; 2013 May; 115(1):23-41. PubMed ID: 23435510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]