These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1541337)
1. Mass spectrometric analysis of the structure of gamma II bovine lens crystallin. Qin W; Smith JB; Smith DL; Edmonds CG Exp Eye Res; 1992 Jan; 54(1):23-32. PubMed ID: 1541337 [TBL] [Abstract][Full Text] [Related]
2. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry. Smith JB; Sun Y; Smith DL; Green B Protein Sci; 1992 May; 1(5):601-8. PubMed ID: 1304359 [TBL] [Abstract][Full Text] [Related]
4. Modifications of the water-insoluble human lens alpha-crystallins. Lund AL; Smith JB; Smith DL Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373 [TBL] [Abstract][Full Text] [Related]
5. Post-translational modifications of water-soluble human lens crystallins from young adults. Miesbauer LR; Zhou X; Yang Z; Yang Z; Sun Y; Smith DL; Smith JB J Biol Chem; 1994 Apr; 269(17):12494-502. PubMed ID: 8175657 [TBL] [Abstract][Full Text] [Related]
11. Primary structure of beta s-crystallin from human lens. Zarina S; Abbasi A; Zaidi ZH Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):375-81. PubMed ID: 1445197 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of synthetic model peptides of the DNA-binding cI434 repressor by electrospray ionization and fast atom bombardment mass spectrometry. Percipalle P; Saletti R; Pongor S; Foti S; Tossi A; Fisichella S Biol Mass Spectrom; 1994 Dec; 23(12):727-33. PubMed ID: 7841207 [TBL] [Abstract][Full Text] [Related]
14. Identification of the major components of the high molecular weight crystallins from old human lenses. Yang Z; Chamorro M; Smith DL; Smith JB Curr Eye Res; 1994 Jun; 13(6):415-21. PubMed ID: 7924405 [TBL] [Abstract][Full Text] [Related]
15. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions. Yan H; Willis AC; Harding JJ Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of tandem mass spectrometric detection to the analysis of peptide mixtures by continuous flow fast atom bombardment mass spectrometry. Ackermann BL; Coutant JE; Chen TM Biol Mass Spectrom; 1991 Jul; 20(7):431-40. PubMed ID: 1932159 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous detection of thiol- and disulfide-containing peptides by electrochemical high-performance liquid chromatography with identification by mass spectrometry. Sun YP; Smith DL; Shoup RE Anal Biochem; 1991 Aug; 197(1):69-76. PubMed ID: 1952077 [TBL] [Abstract][Full Text] [Related]
18. Formylated peptides from cyanogen bromide digests identified by fast atom bombardment mass spectrometry. Goodlett DR; Armstrong FB; Creech RJ; van Breemen RB Anal Biochem; 1990 Apr; 186(1):116-20. PubMed ID: 2356963 [TBL] [Abstract][Full Text] [Related]
19. Post-translational modification of alphaB-crystallin of normal human lens. Kamei A; Hamaguchi T; Matsuura N; Iwase H; Masuda K Biol Pharm Bull; 2000 Feb; 23(2):226-30. PubMed ID: 10706390 [TBL] [Abstract][Full Text] [Related]
20. Analysis of proteins and glycoproteins at the picomole level by on-line coupling of microbore high-performance liquid chromatography with flow fast atom bombardment and electrospray mass spectrometry: a comparative evaluation. Hemling ME; Roberts GD; Johnson W; Carr SA; Covey TR Biomed Environ Mass Spectrom; 1990 Nov; 19(11):677-91. PubMed ID: 2076466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]