These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 154219)

  • 1. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly.
    Kirschfeld K; Feiler R; Minke B
    Z Naturforsch C Biosci; 1978; 33(11-12):1009-10. PubMed ID: 154219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for differently protonated forms of metarhodopsin II as intermediates in the decay of membrane-bound cattle rhodopsin.
    Bennett N
    Biochem Biophys Res Commun; 1978 Jul; 83(2):457-65. PubMed ID: 29625
    [No Abstract]   [Full Text] [Related]  

  • 3. Quantum efficiency and photosensitivity of the rhodopsin equilibrium metarhodopsin conversion in crayfish photoreceptors.
    Cronin TW; Goldsmith TH
    Photochem Photobiol; 1982 Oct; 36(4):447-54. PubMed ID: 7146115
    [No Abstract]   [Full Text] [Related]  

  • 4. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes.
    Vandenberg CA; Montal M
    Biochemistry; 1984 May; 23(11):2347-52. PubMed ID: 6089868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of metarhodospin380 in the retinal rods of the frog.
    Baumann C
    J Physiol; 1976 Jul; 259(2):357-66. PubMed ID: 1085360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the correlation between light-induced protein fluorescence changes and the formation of metarhodopsin III465 in bovine photoreceptor disk membranes.
    Chiba T; Asai H; Suzuki H
    Biochem Biophys Res Commun; 1980 Feb; 92(3):853-9. PubMed ID: 7362609
    [No Abstract]   [Full Text] [Related]  

  • 7. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D; Hofmann KP
    FEBS Lett; 1981 Dec; 136(2):201-7. PubMed ID: 7327258
    [No Abstract]   [Full Text] [Related]  

  • 9. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions.
    Parkes JH; Liebman PA
    Biochemistry; 1984 Oct; 23(21):5054-61. PubMed ID: 6498176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical study of the light-induced protonation changes associated with the metarhodopson II intermediate in rod-outer-segment membranes.
    Bennett N
    Eur J Biochem; 1980 Oct; 111(1):99-103. PubMed ID: 7439192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium.
    Emeis D; Kühn H; Reichert J; Hofmann KP
    FEBS Lett; 1982 Jun; 143(1):29-34. PubMed ID: 6288450
    [No Abstract]   [Full Text] [Related]  

  • 12. The decay of metarhodopsin II in cattle rod outer segment membranes: protonation and spectral changes.
    Bennett N
    Biochem Biophys Res Commun; 1980 Oct; 96(4):1695-701. PubMed ID: 7447949
    [No Abstract]   [Full Text] [Related]  

  • 13. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes.
    Hofmann KP; Emeis D; Schnetkamp PP
    Biochim Biophys Acta; 1983 Oct; 725(1):60-70. PubMed ID: 6313051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A; Kühn H; Hofmann KP
    Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark regeneration of rhodopsin in crayfish photoreceptors.
    Cronin TW; Goldsmith TH
    J Gen Physiol; 1984 Jul; 84(1):63-81. PubMed ID: 6747600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.
    Byk T; Bar-Yaacov M; Doza YN; Minke B; Selinger Z
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1907-11. PubMed ID: 8446607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phospholipid removal on the kinetics of the metarhodopsin I to metarhodopsin II reaction.
    Stewart JG; Baker BN; Plante EO; Williams TP
    Arch Biochem Biophys; 1976 Jan; 172(1):246-51. PubMed ID: 1252079
    [No Abstract]   [Full Text] [Related]  

  • 18. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin.
    Minke B; Kirschfeld K
    J Gen Physiol; 1979 May; 73(5):517-40. PubMed ID: 458418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two forms of intermediates of frog rhodopsin in rod outer segments.
    Sasaki N; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1983 Jan; 722(1):80-7. PubMed ID: 6600624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes.
    Baldwin PA; Hubbell WL
    Biochemistry; 1985 May; 24(11):2624-32. PubMed ID: 4027217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.