These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1542273)

  • 1. Acute insulin withdrawal from diabetic BB rats decreases myocardial glycolysis during low-flow ischemia.
    Broderick TL; Barr RL; Quinney HA; Lopaschuk GD
    Metabolism; 1992 Mar; 41(3):332-8. PubMed ID: 1542273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts.
    Davies NJ; McVeigh JJ; Lopaschuk GD
    Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia.
    Lopaschuk GD; Spafford MA; Davies NJ; Wall SR
    Circ Res; 1990 Feb; 66(2):546-53. PubMed ID: 2297817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolysis and glucose oxidation during reperfusion of ischemic hearts from diabetic rats.
    Gamble J; Lopaschuk GD
    Biochim Biophys Acta; 1994 Jan; 1225(2):191-9. PubMed ID: 8280788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation.
    Broderick TL; Quinney HA; Barker CC; Lopaschuk GD
    Circulation; 1993 Mar; 87(3):972-81. PubMed ID: 8443916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion.
    Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF
    J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts.
    Lopaschuk GD; Wambolt RB; Barr RL
    J Pharmacol Exp Ther; 1993 Jan; 264(1):135-44. PubMed ID: 8380856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of palmitate in isolated working hearts from spontaneously diabetic "BB" Wistar rats.
    Lopaschuk GD; Tsang H
    Circ Res; 1987 Dec; 61(6):853-8. PubMed ID: 3315291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts.
    Saddik M; Lopaschuk GD
    J Biol Chem; 1991 May; 266(13):8162-70. PubMed ID: 1902472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO; Brindley PG; Lopaschuk GD
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    Cardiovasc Res; 1995 Mar; 29(3):373-8. PubMed ID: 7781011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of diltiazem on glycolysis and oxidative metabolism in the ischemic and ischemic/reperfused heart.
    Lopaschuk GD; Barr R; Wambolt R
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1220-8. PubMed ID: 1545389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts.
    Finegan BA; Lopaschuk GD; Coulson CS; Clanachan AS
    Circulation; 1993 Mar; 87(3):900-8. PubMed ID: 8443910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart.
    Schönekess BO; Allard MF; Henning SL; Wambolt RB; Lopaschuk GD
    Circ Res; 1997 Oct; 81(4):540-9. PubMed ID: 9314835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolysis is predominant source of myocardial ATP production immediately after birth.
    Lopaschuk GD; Spafford MA; Marsh DR
    Am J Physiol; 1991 Dec; 261(6 Pt 2):H1698-705. PubMed ID: 1750528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute insulin withdrawal contributes to ischemic heart failure in spontaneously diabetic BB Wistar rats.
    Lopaschuk GD; Spafford MA
    Can J Physiol Pharmacol; 1990 Mar; 68(3):462-6. PubMed ID: 2182188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T; Lopaschuk GD
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac function and ischaemic tolerance during acute loss of metabolic control in the diabetic BB Wor rat.
    Broderick TL; Poirier P
    Acta Diabetol; 2005 Dec; 42(4):171-8. PubMed ID: 16382304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts.
    Liu Q; Clanachan AS; Lopaschuk GD
    Am J Physiol; 1998 Sep; 275(3):E392-9. PubMed ID: 9725804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.