These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 1542562)
1. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp). Przykorska A; el Adlouni C; Keith G; Szarkowski JW; Dirheimer G Nucleic Acids Res; 1992 Feb; 20(4):659-63. PubMed ID: 1542562 [TBL] [Abstract][Full Text] [Related]
2. Structural specificity of nuclease from wheat chloroplasts stroma. Gabryszuk J; Keith G; Mońko M; Kuligowska E; Dirheimer G; Szarkowski JW; Przykorska A Nucleic Acids Symp Ser; 1995; (33):115-9. PubMed ID: 8643343 [TBL] [Abstract][Full Text] [Related]
3. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Westhof E; Dumas P; Moras D Acta Crystallogr A; 1988 Mar; 44 ( Pt 2)():112-23. PubMed ID: 3272146 [TBL] [Abstract][Full Text] [Related]
4. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping. Chow CS; Behlen LS; Uhlenbeck OC; Barton JK Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli tRNA(Asp) recognition mechanism differing from that of the yeast system. Nameki N; Tamura K; Himeno H; Asahara H; Hasegawa T; Shimizu M Biochem Biophys Res Commun; 1992 Dec; 189(2):856-62. PubMed ID: 1472058 [TBL] [Abstract][Full Text] [Related]
6. Analysis of sequence dependent variations in secondary and tertiary structure of tRNA molecules. Bhattacharyya D; Bansal M J Biomol Struct Dyn; 1994 Jun; 11(6):1251-75. PubMed ID: 7946073 [TBL] [Abstract][Full Text] [Related]
7. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931 [TBL] [Abstract][Full Text] [Related]
8. Loop stereochemistry and dynamics in transfer RNA. Westhof E; Dumas P; Moras D J Biomol Struct Dyn; 1983 Oct; 1(2):337-55. PubMed ID: 6401114 [TBL] [Abstract][Full Text] [Related]
9. Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase. Rudinger J; Puglisi JD; Pütz J; Schatz D; Eckstein F; Florentz C; Giegé R Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5882-6. PubMed ID: 1631068 [TBL] [Abstract][Full Text] [Related]
10. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Becker HD; Giegé R; Kern D Biochemistry; 1996 Jun; 35(23):7447-58. PubMed ID: 8652522 [TBL] [Abstract][Full Text] [Related]
11. Aminoacyl-tRNA synthetase and U54 methyltransferase recognize conformations of the yeast tRNA(Phe) anticodon and T stem/loop domain. Guenther RH; Bakal RS; Forrest B; Chen Y; Sengupta R; Nawrot B; Sochacka E; Jankowska J; Kraszewski A; Malkiewicz A Biochimie; 1994; 76(12):1143-51. PubMed ID: 7748949 [TBL] [Abstract][Full Text] [Related]
12. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA. Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R J Biomol Struct Dyn; 1985 Dec; 3(3):479-93. PubMed ID: 3917033 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs. Wittberger D; Berens C; Hammann C; Westhof E; Schroeder R J Mol Biol; 2000 Jul; 300(2):339-52. PubMed ID: 10873469 [TBL] [Abstract][Full Text] [Related]
14. Pleiotrophic effects of point mutations in yeast tRNA(Asp) on the base modification pattern. Edqvist J; Stråby KB; Grosjean H Nucleic Acids Res; 1993 Feb; 21(3):413-7. PubMed ID: 8441654 [TBL] [Abstract][Full Text] [Related]
15. Structural elements in yeast tRNAs required for homologous modification of guanosine-26 into dimethylguanosine-26 by the yeast Trm1 tRNA-modifying enzyme. Edqvist J; Blomqvist K; Stråby KB Biochemistry; 1994 Aug; 33(32):9546-51. PubMed ID: 8068629 [TBL] [Abstract][Full Text] [Related]
16. Identification of 2'-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. von Ahsen U; Green R; Schroeder R; Noller HF RNA; 1997 Jan; 3(1):49-56. PubMed ID: 8990398 [TBL] [Abstract][Full Text] [Related]
17. Synthetic RNA-cleaving molecules mimicking ribonuclease A active center. Design and cleavage of tRNA transcripts. Podyminogin MA; Vlassov VV; Giegé R Nucleic Acids Res; 1993 Dec; 21(25):5950-6. PubMed ID: 7507235 [TBL] [Abstract][Full Text] [Related]
18. Proton exchange and basepair kinetics of yeast tRNA(Phe) and tRNA(Asp1). Choi BS; Redfield AG J Biochem; 1995 Mar; 117(3):515-20. PubMed ID: 7629016 [TBL] [Abstract][Full Text] [Related]
19. Synthetase recognition determinants of E. coli valine transfer RNA. Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013 [TBL] [Abstract][Full Text] [Related]
20. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]