These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1542683)

  • 1. Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns.
    Stein DB; Conant DS; Ahearn ME; Jordan ET; Kirch SA; Hasebe M; Iwatsuki K; Tan MK; Thomson JA
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1856-60. PubMed ID: 1542683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersed repeats and structural reorganization in subclover chloroplast DNA.
    Milligan BG; Hampton JN; Palmer JD
    Mol Biol Evol; 1989 Jul; 6(4):355-68. PubMed ID: 2615639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of chloroplast genome structure in ferns.
    Wolf PG; Roper JM; Duffy AM
    Genome; 2010 Sep; 53(9):731-8. PubMed ID: 20924422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms.
    Goremykin V; Bobrova V; Pahnke J; Troitsky A; Antonov A; Martin W
    Mol Biol Evol; 1996 Feb; 13(2):383-96. PubMed ID: 8587503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales.
    Turmel M; Otis C; Lemieux C
    BMC Biol; 2005 Oct; 3():22. PubMed ID: 16236178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual characteristics of Codium fragile chloroplast DNA revealed by physical and gene mapping.
    Manhart JR; Kelly K; Dudock BS; Palmer JD
    Mol Gen Genet; 1989 Apr; 216(2-3):417-21. PubMed ID: 2747622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus.
    Delaney TP; Cattolico RA
    Curr Genet; 1989 Mar; 15(3):221-9. PubMed ID: 2766384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families.
    Cosner ME; Jansen RK; Palmer JD; Downie SR
    Curr Genet; 1997 May; 31(5):419-29. PubMed ID: 9162114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new rearrangement of angiosperm chloroplast DNA in rye (Secale cereale) involving translocation and duplication of the ribosomal rpS15 gene.
    Prombona A; Subramanian AR
    J Biol Chem; 1989 Nov; 264(32):19060-5. PubMed ID: 2808411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera.
    Hoot SB; Palmer JD
    J Mol Evol; 1994 Mar; 38(3):274-81. PubMed ID: 8006994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of the chloroplast genome of the chromophytic alga Vaucheria bursata.
    Linne von Berg KH; Kowallik KV
    Plant Mol Biol; 1992 Jan; 18(1):83-95. PubMed ID: 1731981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete cloning of the chloroplast genome of safflower in lambda EMBL3 and mapping of 23S and 16S rRNA genes.
    Tippetts MT; Robertson DL; Smith MA
    Mol Cell Biochem; 1991 Jan; 100(1):61-70. PubMed ID: 1646953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged.
    Strauss SH; Palmer JD; Howe GT; Doerksen AH
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3898-902. PubMed ID: 2836862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns.
    Hasebe M; Omori T; Nakazawa M; Sano T; Kato M; Iwatsuki K
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5730-4. PubMed ID: 8202555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural alterations of the chloroplast genome found in grasses are not common in monocots.
    Katayama H; Ogihara Y
    Curr Genet; 1993 Feb; 23(2):160-5. PubMed ID: 8431958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spinach chloroplast chromosome is bound to the thylakoid membrane in the region of the inverted repeat.
    Liu JW; Rose RJ
    Biochem Biophys Res Commun; 1992 Apr; 184(2):993-1000. PubMed ID: 1575763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families.
    Palmer JD; Nugent JM; Herbon LA
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):769-73. PubMed ID: 16593810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones.
    Lidholm J; Gustafsson P
    Curr Genet; 1991 Jul; 20(1-2):161-6. PubMed ID: 1682061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants.
    Kugita M; Kaneko A; Yamamoto Y; Takeya Y; Matsumoto T; Yoshinaga K
    Nucleic Acids Res; 2003 Jan; 31(2):716-21. PubMed ID: 12527781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic studies and comparative chloroplast genome analyses elucidate the basal position of halophyte Nitraria sibirica (Nitrariaceae) in the Sapindales.
    Lu L; Li X; Hao Z; Yang L; Zhang J; Peng Y; Xu H; Lu Y; Zhang J; Shi J; Chen J; Cheng T
    Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Jul; 29(5):745-755. PubMed ID: 28712318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.