These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1542701)

  • 1. Oxidation of ascorbic acid as an indicator of photooxidative stress in the eye.
    Glickman RD; Lam KW
    Photochem Photobiol; 1992 Feb; 55(2):191-6. PubMed ID: 1542701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of retinal pigment epithelium melanin in photoinduced oxidation of ascorbate.
    Rózanowska M; Bober A; Burke JM; Sarna T
    Photochem Photobiol; 1997 Mar; 65(3):472-9. PubMed ID: 9077135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of light-dependent ascorbic acid oxidation by melanin.
    Glickman RD; Sowell R; Lam KW
    Free Radic Biol Med; 1993 Oct; 15(4):453-7. PubMed ID: 8225027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation.
    Rózanowski B; Burke JM; Boulton ME; Sarna T; Rózanowska M
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):2838-47. PubMed ID: 18326697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pro-oxidant effects of interactions of ascorbate with photoexcited melanin fade away with aging of the retina.
    Rózanowski B; Burke J; Sarna T; Rózanowska M
    Photochem Photobiol; 2008; 84(3):658-70. PubMed ID: 18266818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins.
    Ortwerth BJ; Chemoganskiy V; Mossine VV; Olesen PR
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3094-102. PubMed ID: 12824256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species.
    Dewhirst RA; Fry SC
    Biochem J; 2018 Nov; 475(21):3451-3470. PubMed ID: 30348642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Melanin by Eye Retinal Pigment Epithelium Cells Is Associated with Its Oxidative Destruction in Melanolipofuscin Granules.
    Dontsov AE; Sakina NL; Ostrovsky MA
    Biochemistry (Mosc); 2017 Aug; 82(8):916-924. PubMed ID: 28941459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal metabolism of the oxidized form of ascorbic acid (dehydro-L-ascorbic acid).
    Rose RC
    Am J Physiol; 1989 Jan; 256(1 Pt 2):F52-6. PubMed ID: 2912166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of ascorbic acid transport in the aqueous humor].
    Helbig H; Korbmacher C; Wiederholt M
    Fortschr Ophthalmol; 1990; 87(4):421-4. PubMed ID: 2210577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbic acid metabolism in protection against free radicals: a radiation model.
    Rose RC
    Biochem Biophys Res Commun; 1990 Jun; 169(2):430-6. PubMed ID: 2162665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent ascorbic and dehydroascorbic acid uptake by SV-40-transformed retinal pigment epithelial cells.
    Lam KW; Yu HS; Glickman RD; Lin T
    Ophthalmic Res; 1993; 25(2):100-7. PubMed ID: 8391673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular ascorbate transport and metabolism.
    Rose RC; Bode AM
    Comp Biochem Physiol A Comp Physiol; 1991; 100(2):273-85. PubMed ID: 1685949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced and oxidized ascorbates in guinea pig retina under normal and light-exposed conditions.
    Woodford BJ; Tso MO; Lam KW
    Invest Ophthalmol Vis Sci; 1983 Jul; 24(7):862-7. PubMed ID: 6862792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transepithelial transport of ascorbic acid by the isolated intact ciliary epithelial bilayer of the rabbit eye.
    Mead A; Sears J; Sears M
    J Ocul Pharmacol Ther; 1996; 12(3):253-8. PubMed ID: 8875331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lacrimal gland uptake and metabolism of ascorbic acid.
    Dreyer R; Rose RC
    Proc Soc Exp Biol Med; 1993 Feb; 202(2):212-6. PubMed ID: 8424112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and metabolism of ascorbic acid in human placenta.
    Choi JL; Rose RC
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C110-3. PubMed ID: 2750883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbic acid uptake and metabolism by corneal endothelium.
    Bode AM; Vanderpool SS; Carlson EC; Meyer DA; Rose RC
    Invest Ophthalmol Vis Sci; 1991 Jul; 32(8):2266-71. PubMed ID: 2071339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement for GSH in recycling of ascorbic acid in endothelial cells.
    May JM; Qu Z; Li X
    Biochem Pharmacol; 2001 Oct; 62(7):873-81. PubMed ID: 11543722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.