These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1543807)

  • 1. Compliance and ultimate strength of composite arterial prostheses.
    Gershon B; Cohn D; Marom G
    Biomaterials; 1992; 13(1):38-43. PubMed ID: 1543807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New arterial prostheses by filament winding.
    Gershon B; Marom G; Cohn D
    Clin Mater; 1990; 5(1):13-27. PubMed ID: 10149950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic response of filament wound arterial prostheses under internal pressure.
    Hellener G; Cohn D; Marom G
    Biomaterials; 1994 Nov; 15(14):1115-21. PubMed ID: 7893913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing a selectively biodegradable filament wound arterial prosthesis: a short-term implantation study.
    Cohn D; Elchai Z; Gershon B; Karck M; Lazarovici G; Sela J; Chandra M; Marom G; Uretzky G
    J Biomed Mater Res; 1992 Sep; 26(9):1184-204. PubMed ID: 1429766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses.
    Gershon B; Cohn D; Marom G
    Biomaterials; 1990 Oct; 11(8):548-52. PubMed ID: 2279055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite hydrogels for implants.
    Ambrosio L; De Santis R; Nicolais L
    Proc Inst Mech Eng H; 1998; 212(2):93-9. PubMed ID: 9612000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the anisotropic behaviour of filament wound vascular grafts.
    Hellener G; Cohn D; Marom G
    Clin Mater; 1994; 16(4):195-200. PubMed ID: 10150167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts.
    Gupta BS; Kasyanov VA
    J Biomed Mater Res; 1997 Mar; 34(3):341-9. PubMed ID: 9086404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material.
    Boeree NR; Dove J; Cooper JJ; Knowles J; Hastings GW
    Biomaterials; 1993 Aug; 14(10):793-6. PubMed ID: 8218731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicone-based vascular prosthesis: assessment of the mechanical properties.
    Larena-Avellaneda A; Dittmann G; Haacke C; Graunke F; Siegel R; Dietz UA; Debus ES
    Ann Vasc Surg; 2008 Jan; 22(1):106-14. PubMed ID: 18083333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue.
    Ton That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):461-8. PubMed ID: 10880089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The elastic properties of a polyurethane arterial prosthesis.
    How TV; Clarke RM
    J Biomech; 1984; 17(8):597-608. PubMed ID: 6490672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel synthetic selectively degradable vascular prostheses: a preliminary implantation study.
    Izhar U; Schwalb H; Borman JB; Hellener GR; Hotoveli-Salomon A; Marom G; Stern T; Cohn D
    J Surg Res; 2001 Feb; 95(2):152-60. PubMed ID: 11162039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical and microscopic aspects of the deformation and fracture of a poly (ether urethane-urea) spun arterial prosthesis.
    Williams DF; Zhong SP; Doherty PJ
    Biomed Mater Eng; 1991; 1(2):75-90. PubMed ID: 1364633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites.
    Liang SL; Cook WD; Thouas GA; Chen QZ
    Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia.
    Bellon JM; Rodriguez M; Garcia-Honduvilla N; Gomez-Gil V; Pascual G; Bujan J
    J Invest Surg; 2008; 21(5):280-7. PubMed ID: 19160136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [COMPARATIVE EVALUATION OF THE DYNAMIC BIOMECHANICAL COMPATIBILITY OF SYNTHETIC VASCULAR PROSTHESES IN VITRO, EX VIVO AND IN VIVO].
    Zhorzholiani S; Krasheninnikov S; Shepelev A; Tenchurin T; Gorodkov A; Bokeria L
    Georgian Med News; 2018 Nov; (284):108-114. PubMed ID: 30618400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.
    Wang F; Mohammed A; Li C; Ge P; Wang L; King MW
    Biomed Mater Eng; 2014; 24(6):2127-33. PubMed ID: 25226910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supporting, microporous, elastomeric, degradable prostheses to improve the arterialization of autologous vein grafts.
    Hinrichs WL; Zweep HP; Satoh S; Feijen J; Wildevuur CR
    Biomaterials; 1994 Jan; 15(2):83-91. PubMed ID: 8011864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Dialine vascular prosthesis knitted from an alternative source of polyester yarns.
    King MW; Marois Y; Guidoin R; Ukpabi P; Deng X; Martin L; Pâris E; Douville Y
    J Biomed Mater Res; 1995 May; 29(5):595-610. PubMed ID: 7622545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.