These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1543853)

  • 1. Effect of oxygenator type and bypass flow pattern on the P(a-ET)CO2 gradient.
    Opper SE; Fibuch EE; Nelson RE; Lonergan JH
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):46-50. PubMed ID: 1543853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass: a comparison between hollow fiber and flat sheet membrane oxygenators.
    Gu YJ; Boonstra PW; Graaff R; Rijnsburger AA; Mungroop H; van Oeveren W
    Artif Organs; 2000 Jan; 24(1):43-8. PubMed ID: 10677156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between oxygenator exhaust P(CO2) and arterial P(CO2) during hypothermic cardiopulmonary bypass.
    Graham JM; Gibbs NM; Weightman WM; Sheminant MR
    Anaesth Intensive Care; 2005 Aug; 33(4):457-61. PubMed ID: 16119486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass.
    Kristiansen F; Høgetveit JO; Pedersen TH
    Perfusion; 2006 Jan; 21(1):21-6. PubMed ID: 16485695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral carbon dioxide reactivity during nonpulsatile cardiopulmonary bypass.
    Lundar T; Lindegaard KF; Frøysaker T; Grip A; Bergman M; Am-Holen E; Nornes H
    Ann Thorac Surg; 1986 May; 41(5):525-30. PubMed ID: 3085604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The type of aortic cannula and membrane oxygenator affect the pulsatile waveform morphology produced by a neonate-infant cardiopulmonary bypass system in vivo.
    Undar A; Lodge AJ; Daggett CW; Runge TM; Ungerleider RM; Calhoon JH
    Artif Organs; 1998 Aug; 22(8):681-6. PubMed ID: 9702320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass.
    Ganushchak YM; Reesink KD; Weerwind PW; Maessen JG
    Perfusion; 2011 Jan; 26(1):39-44. PubMed ID: 20921084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Distinct Oxygenators on Pulsatile Energy Indicators in an Adult Cardiopulmonary Bypass Model.
    Griep LM; van Barneveld LJ; Simons AP; Boer C; Weerwind PW
    Artif Organs; 2017 Feb; 41(2):E15-E25. PubMed ID: 28181301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of five commercially available adult oxygenators in terms of pressure drop during normothermic and hypothermic cardiopulmonary bypass.
    Ji B; Wang H; Miao N; Xing J; Liu W; Liu R; Long C
    Int J Artif Organs; 2010 May; 33(5):310-6. PubMed ID: 20593353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three commercially available hollow fiber oxygenators: gas transfer performance and biocompatibility.
    de Vroege R; Wagemakers M; te Velthuis H; Bulder E; Paulus R; Huybregts R; Wildevuur W; Eijsman L; van Oeveren W; Wildevuur C
    ASAIO J; 2001; 47(1):37-44. PubMed ID: 11199313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates.
    Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD
    Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass.
    Baraka A; El-Khatib M; Muallem E; Jamal S; Haroun-Bizri S; Aouad M
    J Extra Corpor Technol; 2005 Jun; 37(2):192-5. PubMed ID: 16117458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile and nonpulsatile extracorporeal circulation using Capiox E terumo oxygenator: a comparison study with Ultrox and Maxima membrane oxygenators.
    Minami K; Bairaktaris A; Murray E; Weitkemper H; Dramburg W; Körfer R
    J Cardiovasc Surg (Torino); 1997 Jun; 38(3):227-32. PubMed ID: 9219471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefits of Continuous Monitoring of PCO2 Obtained from a System Applied to Membrane Oxygenator Exhaustion of the Cardiopulmonary Bypass Circuit.
    Filho VADR; Oliveira EL; Scramim JF; Sanga MA; Santos MAD
    Rev Port Cir Cardiotorac Vasc; 2019; 26(3):205-208. PubMed ID: 31734972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Clinical experiences with a new membrane oxygenator with low priming volume (D702 MASTER FLO 51), studies during pulsatile and constant flow perfusion].
    Kobayashi S; Kitamura S; Kawachi K; Nishii T; Taniguchi S; Fukutomi M; Mizuguchi K; Hamada Y; Hasegawa J
    Kyobu Geka; 1989 Jun; 42(6):453-6. PubMed ID: 2779048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.
    Henriksen L
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):366-78. PubMed ID: 3086331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of red cell deformability during extracorporeal bypass: membrane v bubble oxygenator.
    Hakoshima A; Goto H; Abe K; Benson KT; Moran JF; Arakawa K
    J Cardiothorac Anesth; 1989 Apr; 3(2):189-92. PubMed ID: 2519944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.