BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 154404)

  • 21. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg2+ and low Ca2+ concentrations.
    Shigekawa M; Dougherty JP
    J Biol Chem; 1978 Mar; 253(5):1451-7. PubMed ID: 146711
    [No Abstract]   [Full Text] [Related]  

  • 22. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS; De Meis L
    Biochim Biophys Acta; 1976 May; 433(3):520-30. PubMed ID: 819033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic low-frequency stimulation of rabbit fast-twitch muscle induces partial inactivation of the sarcoplasmic reticulum Ca2(+)-ATPase and changes in its tryptic cleavage.
    Dux L; Green HJ; Pette D
    Eur J Biochem; 1990 Aug; 192(1):95-100. PubMed ID: 2144818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Some characteristics of sarcoplasmic reticulum in fast- and slow-twitch muscles.
    Pette D; Heilmann C
    Biochem Soc Trans; 1979 Aug; 7(4):765-7. PubMed ID: 157901
    [No Abstract]   [Full Text] [Related]  

  • 25. Morphological and biochemical correlates of skeletal muscle contractility in the cat. II. Physiological and biochemical studies.
    Van Winkle WB; Entman ML; Bornet EP; Schwartz A
    J Cell Physiol; 1978 Oct; 97(1):121-35. PubMed ID: 152319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation between ultrastructural and functional changes in sarcoplasmic reticulum during chronic stimulation of fast muscle.
    Heilman C; Müller W; Pette D
    J Membr Biol; 1981 Apr; 59(2):143-9. PubMed ID: 6454001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit.
    Pette D; Müller W; Leisner E; Vrbová G
    Pflugers Arch; 1976 Jul; 364(2):103-12. PubMed ID: 134352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The modulation of the calcium transport by skeletal muscle sarcoplasmic reticulum in the hibernating European hamster.
    Agostini B; De Martino L; Soltau B; Hasselbach W
    Z Naturforsch C J Biosci; 1991; 46(11-12):1109-26. PubMed ID: 1840124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow/cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle.
    Leberer E; Härtner KT; Brandl CJ; Fujii J; Tada M; MacLennan DH; Pette D
    Eur J Biochem; 1989 Oct; 185(1):51-4. PubMed ID: 2530087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+ release from sarcoplasmic reticulum of skinned fast- and slow-twitch muscle fibers.
    Salviati G; Volpe P
    Am J Physiol; 1988 Mar; 254(3 Pt 1):C459-65. PubMed ID: 2450472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The initial phase of Ca2+-uptake and ATPase activity of sarcoplasmic reticulum vesicles.
    Kurzmack M; Inesi G
    FEBS Lett; 1977 Feb; 74(1):35-7. PubMed ID: 138599
    [No Abstract]   [Full Text] [Related]  

  • 32. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle.
    Frías JA; Cadefau JA; Prats C; Morán M; Megías A; Cussó R
    Biochim Biophys Acta; 2005 Feb; 1668(1):64-74. PubMed ID: 15670732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of morphological, functional and metabolic properties of fast-twitch muscle as induced by long-term electrical stimulation.
    Pette D; Heilmann C
    Basic Res Cardiol; 1977; 72(2-3):247-53. PubMed ID: 860990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations.
    Shigekawa M; Pearl LJ
    J Biol Chem; 1976 Nov; 251(22):6947-52. PubMed ID: 136443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ; Zaremba R; Elzinga G
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence.
    Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W
    Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 39. J.B. Wolffe memorial lecture. Activity-induced fast to slow transitions in mammalian muscle.
    Pette D
    Med Sci Sports Exerc; 1984 Dec; 16(6):517-28. PubMed ID: 6083430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [ATPase activity and processes of calcium transport in membranes of sarcoplasmic reticulum of skeletal muscles with E-avitaminotic dystrophy].
    Kurskiĭ MD; Grigor'eva VA; Medovar EN; Meshkova LI
    Ukr Biokhim Zh (1978); 1978; 50(1):85-90. PubMed ID: 146930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.