BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 154416)

  • 1. Potassium transport in Escherichia coli. Evidence for a K+-transport adenosine-5'-triphosphatase.
    Wieczorek L; Altendorf K
    FEBS Lett; 1979 Feb; 98(2):233-6. PubMed ID: 154416
    [No Abstract]   [Full Text] [Related]  

  • 2. [Obtaining "soluble" Na+, K+-ATPase from various subcellular membranous structures in the brain using nonionic detergents].
    Kravtsov AV; Kirsenko OV
    Ukr Biokhim Zh; 1974; 46(6):719-24. PubMed ID: 4281126
    [No Abstract]   [Full Text] [Related]  

  • 3. [Study of the interaction of surface-active substances with the membranous structures of the brain and their Mg2plus, Na plus, Kplus-ATPase activity].
    Kirsenko OV; Demchenko PA; Vavilova GL; Iaroshenko NA; Kravtsov AV
    Ukr Biokhim Zh; 1974; 46(3):300-6. PubMed ID: 4275961
    [No Abstract]   [Full Text] [Related]  

  • 4. [On the effect of antibodies on ATPase activity and active Na-K-transport of E. Coli and human erythrocytes].
    Averdunk R; Günther T; Dorn F; Zimmermann U
    Z Naturforsch B; 1969 Jun; 24(6):693-8. PubMed ID: 4390016
    [No Abstract]   [Full Text] [Related]  

  • 5. A K+ transport ATPase in Escherichia coli.
    Epstein W; Whitelaw V; Hesse J
    J Biol Chem; 1978 Oct; 253(19):6666-8. PubMed ID: 211128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Exogenous orthophosphate regulation of ATPase activity of E. coli cells].
    Nesmeianova MA; Motlokh OB; Kolot MN; Kulaev IS
    Biokhimiia; 1979 Jul; 44(7):1212-7. PubMed ID: 159076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex.
    Whittam R; Blond DM
    Biochem J; 1964 Jul; 92(1):147-58. PubMed ID: 4221018
    [No Abstract]   [Full Text] [Related]  

  • 8. Potassium transport in Escherichia coli: genetic and biochemical characterization of the K+-transporting ATPase.
    Epstein W; Wieczorek L; Siebers A; Altendorf K
    Biochem Soc Trans; 1984 Apr; 12(2):235-6. PubMed ID: 6144601
    [No Abstract]   [Full Text] [Related]  

  • 9. Chemiosmotic interpretation of active transport in bacteria.
    Harold FM
    Ann N Y Acad Sci; 1974 Feb; 227():297-311. PubMed ID: 4275121
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in cation transport and (Na + K)-activated adenosine triphosphatase produced by chronic administration of ethanol.
    Israel Y; Kalant H; LeBlanc E; Bernstein JC; Salazar I
    J Pharmacol Exp Ther; 1970 Aug; 174(2):330-6. PubMed ID: 4247519
    [No Abstract]   [Full Text] [Related]  

  • 11. [Model of proton-potassium transport systems].
    Martirosov SM; Panosian GA; Trchunian AA
    Biofizika; 1982; 27(2):249-52. PubMed ID: 6176277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [ATPase relating to Na and K active transport].
    Nakao M; Nagano K; Fujita M; Nakao T; Tajima Y
    Tanpakushitsu Kakusan Koso; 1966 Apr; 11(4):309-20. PubMed ID: 4225412
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and enzymic aspects of the hydrolysis of adenosine triphosphate by membranes of kidney cortex and erythrocytes.
    Wheeler KP; Whittam R
    Biochem J; 1964 Nov; 93(2):349-63. PubMed ID: 4220934
    [No Abstract]   [Full Text] [Related]  

  • 15. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes.
    Whittam R; Ager ME
    Biochem J; 1964 Nov; 93(2):337-48. PubMed ID: 4220933
    [No Abstract]   [Full Text] [Related]  

  • 16. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli.
    Rosen BP
    J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for membrane potential in active transport of glutamine by Escherichia coli.
    Plate CA
    J Bacteriol; 1979 Jan; 137(1):221-5. PubMed ID: 153897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Na+-K+-activated adenosine triphosphatase in the transmembrane transport of K+ and Na+: relationships to the inotropic and electrophysiologic effects of digitalis.
    Ten Eick RE; Bassett AL; Okita GT
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():107-17. PubMed ID: 4283204
    [No Abstract]   [Full Text] [Related]  

  • 19. [Reversibility of the proton-potassium pump and synthesis of ATP in E. coli].
    Martirosov SM; Trchunian AA
    Biofizika; 1983; 28(1):83-6. PubMed ID: 6299398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium reversible inhibition of leukotaxis by ouabain.
    Ward PA; Becker EL
    Life Sci; 1970 Mar; 9(6):355-60. PubMed ID: 4315650
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.