BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1544223)

  • 1. Induction and expression of protective T cells during Mycobacterium avium infections in mice.
    Appelberg R; Pedrosa J
    Clin Exp Immunol; 1992 Mar; 87(3):379-85. PubMed ID: 1544223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of macrophage activation and of Bcg-encoded macrophage function(s) in the control of Mycobacterium avium infection in mice.
    Appelberg R; Sarmento AM
    Clin Exp Immunol; 1990 Jun; 80(3):324-31. PubMed ID: 2115416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance of virulent Mycobacterium avium to gamma interferon-mediated antimicrobial activity suggests additional signals for induction of mycobacteriostasis.
    Flórido M; Gonçalves AS; Silva RA; Ehlers S; Cooper AM; Appelberg R
    Infect Immun; 1999 Jul; 67(7):3610-8. PubMed ID: 10377146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive transfer of immunity of Mycobacterium avium in susceptible and resistant strains of mice.
    Stokes RW; Collins FM
    Clin Exp Immunol; 1990 Jul; 81(1):109-15. PubMed ID: 2116245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of immune responses during infection with Mycobacterium avium strains 100, 101 and the recently sequenced 104.
    Saunders BM; Dane A; Briscoe H; Britton WJ
    Immunol Cell Biol; 2002 Dec; 80(6):544-9. PubMed ID: 12406388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative impact of bacterial virulence and host genetic background on cytokine expression during Mycobacterium avium infection of mice.
    Castro AG; Minóprio P; Appelberg R
    Immunology; 1995 Aug; 85(4):556-61. PubMed ID: 7558149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between virulence of Mycobacterium avium strains and induction of tumor necrosis factor alpha production in infected mice and in in vitro-cultured mouse macrophages.
    Sarmento AM; Appelberg R
    Infect Immun; 1995 Oct; 63(10):3759-64. PubMed ID: 7558277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell immune responses in Mycobacterium avium-infected mice.
    Hubbard RD; Flory CM; Collins FM
    Infect Immun; 1992 Jan; 60(1):150-3. PubMed ID: 1729179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implication of phagosome-lysosome fusion in restriction of Mycobacterium avium growth in bone marrow macrophages from genetically resistant mice.
    de Chastellier C; Fréhel C; Offredo C; Skamene E
    Infect Immun; 1993 Sep; 61(9):3775-84. PubMed ID: 8359899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium avium-complex infections in normal and immunodeficient mice.
    Collins FM; Stokes RW
    Tubercle; 1987 Jun; 68(2):127-36. PubMed ID: 2958962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Mycobacterium avium in activated macrophages harvested from inbred mice with differing innate susceptibilities to mycobacterial infection.
    Stokes RW; Collins FM
    Infect Immun; 1988 Sep; 56(9):2250-4. PubMed ID: 3137164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host and bacterial factors control the Mycobacterium avium-induced chronic peritoneal granulocytosis in mice.
    Appelberg R; Pedrosa JM; Silva MT
    Clin Exp Immunol; 1991 Feb; 83(2):231-6. PubMed ID: 1993357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumour necrosis factor-alpha (TNF-alpha) in the host resistance to mycobacteria of distinct virulence.
    Appelberg R; Sarmento A; Castro AG
    Clin Exp Immunol; 1995 Aug; 101(2):308-13. PubMed ID: 7648714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited role of the Toll-like receptor-2 in resistance to Mycobacterium avium.
    Gomes MS; Flórido M; Cordeiro JV; Teixeira CM; Takeuchi O; Akira S; Appelberg R
    Immunology; 2004 Feb; 111(2):179-85. PubMed ID: 15027903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse T cell clones against Mycobacterium avium: identification of clones that modify resistance against atypical mycobacteria infection.
    Denis M
    J Leukoc Biol; 1992 Jan; 51(1):7-12. PubMed ID: 1740647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of CD40 ligand in Mycobacterium avium infection.
    Hayashi T; Rao SP; Meylan PR; Kornbluth RS; Catanzaro A
    Infect Immun; 1999 Jul; 67(7):3558-65. PubMed ID: 10377139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of IL-12 in immunotherapy and vaccine design in experimental Mycobacterium avium infections.
    Silva RA; Pais TF; Appelberg R
    J Immunol; 1998 Nov; 161(10):5578-85. PubMed ID: 9820535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of Infected Gr-1
    Abdissa K; Nerlich A; Beineke A; Ruangkiattikul N; Pawar V; Heise U; Janze N; Falk C; Bruder D; Schleicher U; Bogdan C; Weiss S; Goethe R
    Front Immunol; 2018; 9():2317. PubMed ID: 30386330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjuvant treatment increases the resistance to Mycobacterium avium infection of mycobacteria-susceptible BALB/c mice.
    Castro AP; Aguas AP; Silva MT
    Clin Exp Immunol; 1993 Jun; 92(3):466-72. PubMed ID: 8513578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium.
    de Lisle GW; Wards BJ; Buddle BM; Collins DM
    Tuberculosis (Edinb); 2005; 85(1-2):73-9. PubMed ID: 15687030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.