BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1544463)

  • 1. Interactions of Bowringia mildbraedii agglutinin with complex- and hybrid-type glycans.
    Chawla D; Animashaun T; Hughes RC
    FEBS Lett; 1992 Feb; 298(2-3):291-6. PubMed ID: 1544463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin.
    Yamamoto K; Tsuji T; Matsumoto I; Osawa T
    Biochemistry; 1981 Sep; 20(20):5894-9. PubMed ID: 6895318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the N-linked oligosaccharides of the human transferrin receptor.
    Orberger G; Geyer R; Stirm S; Tauber R
    Eur J Biochem; 1992 Apr; 205(1):257-67. PubMed ID: 1555586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bowringia milbraedii agglutinin. Specificity of binding to early processing intermediates of asparagine-linked oligosaccharide and use as a marker of endoplasmic reticulum glycoproteins.
    Animashaun T; Hughes RC
    J Biol Chem; 1989 Mar; 264(8):4657-63. PubMed ID: 2925660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bowringia mildbraedii agglutinin: polypeptide composition, primary structure and homologies with other legume lectins.
    Chawla D; Animashaun T; Hughes RC; Harris A; Aitken A
    Biochim Biophys Acta; 1993 Sep; 1202(1):38-46. PubMed ID: 8373823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Le(x) determinant.
    Yan L; Wilkins PP; Alvarez-Manilla G; Do SI; Smith DF; Cummings RD
    Glycoconj J; 1997 Jan; 14(1):45-55. PubMed ID: 9076513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate-binding specificity of Tetracarpidium conophorum lectin.
    Sato S; Animashaun T; Hughes RC
    J Biol Chem; 1991 Jun; 266(18):11485-94. PubMed ID: 1711034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A human lysosomal alpha(1----6)-mannosidase active on the branched trimannosyl core of complex glycans.
    Daniel PF; Evans JE; De Gasperi R; Winchester B; Warren CD
    Glycobiology; 1992 Aug; 2(4):327-36. PubMed ID: 1421754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific N-glycosylation of human chorionic gonadotrophin--structural analysis of glycopeptides by one- and two-dimensional 1H NMR spectroscopy.
    Weisshaar G; Hiyama J; Renwick AG
    Glycobiology; 1991 Sep; 1(4):393-404. PubMed ID: 1820200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins.
    Kawashima H; Sueyoshi S; Li H; Yamamoto K; Osawa T
    Glycoconj J; 1990; 7(4):323-34. PubMed ID: 2152329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of sugar chains of the subunits of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.
    Yamaguchi H; Funaoka H; Iwamoto H
    J Biochem; 1992 Mar; 111(3):388-95. PubMed ID: 1587803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEC14, a dominant Chinese hamster ovary glycosylation mutant expresses complex N-glycans with a new N-acetylglucosamine residue in the core region.
    Raju TS; Stanley P
    J Biol Chem; 1996 Mar; 271(13):7484-93. PubMed ID: 8631778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of asparagine-linked oligosaccharides by sequential lectin affinity chromatography.
    Yamamoto K; Tsuji T; Osawa T
    Mol Biotechnol; 1995 Feb; 3(1):25-36. PubMed ID: 7541703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The beta 1----2-D-xylose and alpha 1----3-L-fucose substituted N-linked oligosaccharides from Erythrina cristagalli lectin. Isolation, characterisation and comparison with other legume lectins.
    Ashford D; Dwek RA; Welply JK; Amatayakul S; Homans SW; Lis H; Taylor GN; Sharon N; Rademacher TW
    Eur J Biochem; 1987 Jul; 166(2):311-20. PubMed ID: 3609010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment.
    Tajiri M; Yoshida S; Wada Y
    Glycobiology; 2005 Dec; 15(12):1332-40. PubMed ID: 16037490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asparagine-linked oligosaccharides containing poly-N-acetyllactosamine chains are preferentially bound by immobilized calf heart agglutinin.
    Merkle RK; Cummings RD
    J Biol Chem; 1988 Nov; 263(31):16143-9. PubMed ID: 3182789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restrained vs free dynamics simulations of oligosaccharides: application to solution dynamics of biantennary and bisected biantennary N-linked glycans.
    Rutherford TJ; Homans SW
    Biochemistry; 1994 Aug; 33(32):9606-14. PubMed ID: 8068637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of concanavalin A with asparagine-linked glycopeptides. Structure/activity relationships of the binding and precipitation of oligomannose and bisected hybrid-type glycopeptides with concanavalin A.
    Bhattacharyya L; Brewer CF
    Eur J Biochem; 1989 Jan; 178(3):721-6. PubMed ID: 2912731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of N-glycans from yellow lupin (Lupinus luteus) seed diphosphonucleotide phosphatase/phosphodiesterase.
    Olczak M; Watorek W
    Biochim Biophys Acta; 2000 Oct; 1523(2-3):236-45. PubMed ID: 11042390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ricin-resistant mutants of baby-hamster-kidney cells deficient in alpha-mannosidase-II-catalyzed processing of asparagine-linked oligosaccharides.
    Hughes RC; Feeney J
    Eur J Biochem; 1986 Jul; 158(2):227-37. PubMed ID: 3732270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.