These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 15446801)
21. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility. Chao DS; Liu YH; Jiang SH Appl Radiat Isot; 2016 Jan; 107():312-316. PubMed ID: 26595774 [TBL] [Abstract][Full Text] [Related]
22. The medical-irradiation characteristics for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor. Sakurai Y; Kobayashi T Med Phys; 2002 Oct; 29(10):2328-37. PubMed ID: 12408307 [TBL] [Abstract][Full Text] [Related]
23. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Barth RF; Soloway AH; Goodman JH; Gahbauer RA; Gupta N; Blue TE; Yang W; Tjarks W Neurosurgery; 1999 Mar; 44(3):433-50; discussion 450-1. PubMed ID: 10069580 [TBL] [Abstract][Full Text] [Related]
24. The requirements and development of neutron beams for neutron capture therapy of brain cancer. Moss RL; Aizawa O; Beynon D; Brugger R; Constantine G; Harling O; Liu HB; Watkins P J Neurooncol; 1997 May; 33(1-2):27-40. PubMed ID: 9151221 [TBL] [Abstract][Full Text] [Related]
25. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy. Uusi-Simola J; Heikkinen S; Kotiluoto P; Serén T; Seppälä T; Auterinen I; Savolainen S J Appl Clin Med Phys; 2007 Apr; 8(2):114-23. PubMed ID: 17592463 [TBL] [Abstract][Full Text] [Related]
26. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy. Hsu FY; Tung CJ; Watt DE Radiat Prot Dosimetry; 2003; 104(2):121-6. PubMed ID: 12918789 [TBL] [Abstract][Full Text] [Related]
27. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams. Riley KJ; Binns PJ; Ali SJ; Harling OK Phys Med Biol; 2004 May; 49(10):2015-28. PubMed ID: 15214538 [TBL] [Abstract][Full Text] [Related]
28. Microdosimetric intercomparison of BNCT beams at BNL and MIT. Burmeister J; Riley K; Coderre JA; Harling OK; Ma R; Wielopolski L; Kota C; Maughan RL Med Phys; 2003 Aug; 30(8):2131-9. PubMed ID: 12945978 [TBL] [Abstract][Full Text] [Related]
29. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
30. On-line reconstruction of low boron concentrations by in vivo gamma-ray spectroscopy for BNCT. Verbakel WF; Stecher-Rasmussen F Phys Med Biol; 2001 Mar; 46(3):687-701. PubMed ID: 11277217 [TBL] [Abstract][Full Text] [Related]
31. Computational study of the required dimensions for standard sized phantoms in boron neutron capture therapy dosimetry. Koivunoro H; Auterinen I; Kosunen A; Kotiluoto P; Seppälä T; Savolainen S Phys Med Biol; 2003 Nov; 48(21):N291-300. PubMed ID: 14653569 [TBL] [Abstract][Full Text] [Related]
32. Study of the relative dose-response of BANG-3 polymer gel dosimeters in epithermal neutron irradiation. Uusi-Simola J; Savolainen S; Kangasmäki A; Heikkinen S; Perkiö J; Abo Ramadan U; Seppälä T; Karila J; Serén T; Kotiluoto P; Sorvari P; Auterinen I Phys Med Biol; 2003 Sep; 48(17):2895-906. PubMed ID: 14516107 [TBL] [Abstract][Full Text] [Related]
33. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments. Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833 [TBL] [Abstract][Full Text] [Related]
34. Neutron and photon fields in the BNCT room with closed beam shutters. Marek M; Viererbl L Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):609-12. PubMed ID: 16604710 [TBL] [Abstract][Full Text] [Related]
35. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design. Lee PY; Liu YH; Jiang SH Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784 [TBL] [Abstract][Full Text] [Related]
37. A toolkit for epithermal neutron beam characterisation in BNCT. Auterinen I; Serén T; Uusi-Simola J; Kosunen A; Savolainen S Radiat Prot Dosimetry; 2004; 110(1-4):587-93. PubMed ID: 15353713 [TBL] [Abstract][Full Text] [Related]
38. A preliminary inter-centre comparison study for photon, thermal neutron and epithermal neutron responses of two pairs of ionisation chambers used for BNCT. Roca A; Liu YH; Wojnecki C; Green S; Nievaart S; Ghani Z; Moss R Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S134-6. PubMed ID: 19376717 [TBL] [Abstract][Full Text] [Related]
39. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators. Martín G; Abrahantes A Med Phys; 2004 May; 31(5):1116-22. PubMed ID: 15191299 [TBL] [Abstract][Full Text] [Related]
40. Monte Carlo optimisation of a BNCT facility for treating brain gliomas at the TAPIRO reactor. Nava E; Burn KW; Casalini L; Petrovich C; Rosi G; Sarotto M; Tinti R Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):475-81. PubMed ID: 16604681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]