These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 15446802)
1. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Palmans H; Thomas R; Simon M; Duane S; Kacperek A; DuSautoy A; Verhaegen F Phys Med Biol; 2004 Aug; 49(16):3737-49. PubMed ID: 15446802 [TBL] [Abstract][Full Text] [Related]
2. Application of a portable primary standard level graphite calorimeter for absolute dosimetry in a clinical low-energy passively scattered proton beam. Lourenço A; Lee N; Shipley D; Romano F; Kacperek A; Duane S; Cashmore M; Bass G; Palmans H; Thomas R Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36170868 [No Abstract] [Full Text] [Related]
3. Consistency in reference radiotherapy dosimetry: resolution of an apparent conundrum when (60)Co is the reference quality for charged-particle and photon beams. Andreo P; Wulff J; Burns DT; Palmans H Phys Med Biol; 2013 Oct; 58(19):6593-621. PubMed ID: 24018471 [TBL] [Abstract][Full Text] [Related]
4. Reference dosimetry for light-ion beams based on graphite calorimetry. Rossomme S; Palmans H; Thomas R; Lee N; Duane S; Bailey M; Shipley D; Bertrand D; Romano F; Cirrone P; Cuttone G; Vynckier S Radiat Prot Dosimetry; 2014 Oct; 161(1-4):92-5. PubMed ID: 24336190 [TBL] [Abstract][Full Text] [Related]
5. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry. Rossomme S; Palmans H; Thomas R; Lee N; Bailey M; Shipley D; Al-Sulaiti L; Cirrone P; Romano F; Kacperek A; Bertrand D; Vynckier S Med Phys; 2012 Jun; 39(6Part12):3736-3737. PubMed ID: 28517815 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of w values for carbon beams in air, using a graphite calorimeter. Sakama M; Kanai T; Fukumura A; Abe K Phys Med Biol; 2009 Mar; 54(5):1111-30. PubMed ID: 19174597 [TBL] [Abstract][Full Text] [Related]
7. A portable primary-standard level graphite calorimeter for absolute dosimetry in clinical pencil beam scanning proton beams. Lourenço A; Lee N; Charlwood F; Lambert J; Vera-Sánchez JA; Hussein M; Shipley D; Romano F; Lowe M; Clarke M; Lorentini S; Mazal A; Pettingell J; Palmans H; Thomas R Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37414003 [No Abstract] [Full Text] [Related]
8. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields. Brede HJ; Greif KD; Hecker O; Heeg P; Heese J; Jones DT; Kluge H; Schardt D Phys Med Biol; 2006 Aug; 51(15):3667-82. PubMed ID: 16861773 [TBL] [Abstract][Full Text] [Related]
9. Dosimetry using plane-parallel ionization chambers in a 75 MeV clinical proton beam. Palmans H; Verhaegen F; Denis JM; Vynckier S Phys Med Biol; 2002 Aug; 47(16):2895-905. PubMed ID: 12222853 [TBL] [Abstract][Full Text] [Related]
10. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter. Harty PD; Lye JE; Ramanathan G; Butler DJ; Hall CJ; Stevenson AW; Johnston PN Med Phys; 2014 May; 41(5):052101. PubMed ID: 24784390 [TBL] [Abstract][Full Text] [Related]
11. Direct calibration in megavoltage photon beams using Monte Carlo conversion factor: validation and clinical implications. Wright T; Lye JE; Ramanathan G; Harty PD; Oliver C; Webb DV; Butler DJ Phys Med Biol; 2015 Jan; 60(2):883-904. PubMed ID: 25565406 [TBL] [Abstract][Full Text] [Related]
12. Aerrow: A probe-format graphite calorimeter for absolute dosimetry of high-energy photon beams in the clinical environment. Renaud J; Sarfehnia A; Bancheri J; Seuntjens J Med Phys; 2018 Jan; 45(1):414-428. PubMed ID: 29131344 [TBL] [Abstract][Full Text] [Related]
13. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam. Medin J; Ross CK; Klassen NV; Palmans H; Grusell E; Grindborg JE Phys Med Biol; 2006 Mar; 51(6):1503-21. PubMed ID: 16510959 [TBL] [Abstract][Full Text] [Related]
14. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study. Palmans H; Nafaa L; De JJ; Gillis S; Hoornaert MT; Martens C; Piessens M; Thierens H; Van der Plaetsen A; Vynckier S Phys Med Biol; 2002 Feb; 47(3):421-40. PubMed ID: 11848121 [TBL] [Abstract][Full Text] [Related]
15. Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam. Palmans H; Seuntjens J; Verhaegen F; Denis JM; Vynckier S; Thierens H Med Phys; 1996 May; 23(5):643-50. PubMed ID: 8724735 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of operating a millimeter-scale graphite calorimeter for absolute dosimetry of small-field photon beams in the clinic. Côté B; Keszti F; Bancheri J; Sarfehnia A; Seuntjens J; Renaud J Med Phys; 2021 Nov; 48(11):7476-7492. PubMed ID: 34549805 [TBL] [Abstract][Full Text] [Related]
17. Experimental determination of Medin J; Andreo P; Palmans H Phys Med Biol; 2022 Feb; 67(5):. PubMed ID: 35081517 [No Abstract] [Full Text] [Related]
18. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams. Pinto M; Pimpinella M; Quini M; D'Arienzo M; Astefanoaei I; Loreti S; Guerra AS Phys Med Biol; 2016 Feb; 61(4):1738-64. PubMed ID: 26841127 [TBL] [Abstract][Full Text] [Related]
19. Absolute dosimetry of a 1.5 T MR-guided accelerator-based high-energy photon beam in water and solid phantoms using Aerrow. Renaud J; Sarfehnia A; Bancheri J; Seuntjens J Med Phys; 2020 Mar; 47(3):1291-1304. PubMed ID: 31834640 [TBL] [Abstract][Full Text] [Related]
20. Comparison of dosimetry recommendations for clinical proton beams. Medin J; Andreo P; Vynckier S Phys Med Biol; 2000 Nov; 45(11):3195-211. PubMed ID: 11098898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]