These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Determination of Abraham solute parameters from molecular structure. Jover J; Bosque R; Sales J J Chem Inf Comput Sci; 2004; 44(3):1098-106. PubMed ID: 15154778 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure-property relationship estimation of cation binding affinity of the common amino acids. Jover J; Bosque R; Sales J J Phys Chem A; 2009 Apr; 113(15):3703-8. PubMed ID: 19298068 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
5. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression. Ghasemi J; Saaidpour S Anal Chim Acta; 2007 Dec; 604(2):99-106. PubMed ID: 17996529 [TBL] [Abstract][Full Text] [Related]
6. Prediction of micelle-water partition coefficient from the theoretical derived molecular descriptors. Fatemi MH; Karimian F J Colloid Interface Sci; 2007 Oct; 314(2):665-72. PubMed ID: 17673243 [TBL] [Abstract][Full Text] [Related]
7. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media. Ghasemi JB; Abdolmaleki A; Mandoumi N J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399 [TBL] [Abstract][Full Text] [Related]
8. Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors. Guha R; Jurs PC J Chem Inf Comput Sci; 2004; 44(6):2179-89. PubMed ID: 15554688 [TBL] [Abstract][Full Text] [Related]
9. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation. Votano JR; Parham M; Hall LH; Kier LB; Hall LM Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819 [TBL] [Abstract][Full Text] [Related]
10. QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors. Modarresi H; Dearden JC; Modarress H J Chem Inf Model; 2006; 46(2):930-6. PubMed ID: 16563024 [TBL] [Abstract][Full Text] [Related]
11. Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes: a combined data splitting-feature selection strategy. Hemmateenejad B; Javadnia K; Elyasi M Anal Chim Acta; 2007 May; 592(1):72-81. PubMed ID: 17499073 [TBL] [Abstract][Full Text] [Related]
12. Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods. Basak SC; Natarajan R; Mills D; Hawkins DM; Kraker JJ J Chem Inf Model; 2006; 46(1):65-77. PubMed ID: 16426041 [TBL] [Abstract][Full Text] [Related]
13. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. Pan Y; Jiang J; Wang R; Cao H; Zhao J J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036 [TBL] [Abstract][Full Text] [Related]
14. QSPR treatment of the soil sorption coefficients of organic pollutants. Kahn I; Fara D; Karelson M; Maran U; Andersson PL J Chem Inf Model; 2005; 45(1):94-105. PubMed ID: 15667134 [TBL] [Abstract][Full Text] [Related]
15. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Tabaraki R; Khayamian T; Ensafi AA J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156 [TBL] [Abstract][Full Text] [Related]
16. A QSPR study of O-H bond dissociation energy in phenols. Bosque R; Sales J J Chem Inf Comput Sci; 2003; 43(2):637-42. PubMed ID: 12653532 [TBL] [Abstract][Full Text] [Related]
17. Prediction of acute mammalian toxicity of organophosphorus pesticide compounds from molecular structure. Eldred DV; Jurs PC SAR QSAR Environ Res; 1999; 10(2-3):75-99. PubMed ID: 10491847 [TBL] [Abstract][Full Text] [Related]
18. A QSPR study of the p solute polarity parameter to estimate retention in HPLC. Bosque R; Sales J; Bosch E; Rosés M; García-Alvarez-Coque MC; Torres-Lapasió JR J Chem Inf Comput Sci; 2003; 43(4):1240-7. PubMed ID: 12870917 [TBL] [Abstract][Full Text] [Related]
19. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine. Pan Y; Jiang J; Wang R; Cao H; Cui Y J Hazard Mater; 2009 May; 164(2-3):1242-9. PubMed ID: 18952371 [TBL] [Abstract][Full Text] [Related]
20. Prediction of retention times for a large set of pesticides or toxicants based on support vector machine and the heuristic method. Li X; Luan F; Si H; Hu Z; Liu M Toxicol Lett; 2007 Dec; 175(1-3):136-44. PubMed ID: 18024009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]