These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 15446832)
21. The classification of solvents by combining classical QSPR methodology with principal component analysis. Katritzky AR; Fara DC; Kuanar M; Hur E; Karelson M J Phys Chem A; 2005 Nov; 109(45):10323-41. PubMed ID: 16833328 [TBL] [Abstract][Full Text] [Related]
22. Linear indices of the "molecular pseudograph's atom adjacency matrix": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors. Marrero-Ponce Y J Chem Inf Comput Sci; 2004; 44(6):2010-26. PubMed ID: 15554670 [TBL] [Abstract][Full Text] [Related]
23. Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography. Luan F; Liu HT; Wen Y; Zhang X Anal Chim Acta; 2008 Apr; 612(2):126-35. PubMed ID: 18358857 [TBL] [Abstract][Full Text] [Related]
24. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. Niwa T J Chem Inf Comput Sci; 2003; 43(1):113-9. PubMed ID: 12546543 [TBL] [Abstract][Full Text] [Related]
25. A molecular structure based model for predicting surface tension of organic compounds. Delgado EJ; Diaz GA SAR QSAR Environ Res; 2006 Oct; 17(5):483-96. PubMed ID: 17050188 [TBL] [Abstract][Full Text] [Related]
26. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. Gramatica P; Giani E; Papa E J Mol Graph Model; 2007 Mar; 25(6):755-66. PubMed ID: 16890002 [TBL] [Abstract][Full Text] [Related]
27. Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions. Wang C; Skibic MJ; Higgs RE; Watson IA; Bui H; Wang J; Cintron JM J Chromatogr A; 2009 Jun; 1216(25):5030-8. PubMed ID: 19439313 [TBL] [Abstract][Full Text] [Related]
28. Quantitative structure-lambda(max) relationship study on flavones by heuristic method and radial basis function neural network. Liu H; Wen Y; Luan F; Gao Y; Li X Anal Chim Acta; 2009 Sep; 649(1):52-61. PubMed ID: 19664462 [TBL] [Abstract][Full Text] [Related]
29. Quantitative study of the structure-retention index relationship in the imine family. Acevedo-Martínez J; Escalona-Arranz JC; Villar-Rojas A; Téllez-Palmero F; Pérez-Rosés R; González L; Carrasco-Velar R J Chromatogr A; 2006 Jan; 1102(1-2):238-44. PubMed ID: 16288769 [TBL] [Abstract][Full Text] [Related]
30. A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry's law constant of organic compounds. Yaffe D; Cohen Y; Espinosa G; Arenas A; Giralt F J Chem Inf Comput Sci; 2003; 43(1):85-112. PubMed ID: 12546542 [TBL] [Abstract][Full Text] [Related]
31. Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship. Luan F; Liu H; Gao Y; Li Q; Zhang X; Guo Y J Colloid Interface Sci; 2009 Aug; 336(2):773-9. PubMed ID: 19439317 [TBL] [Abstract][Full Text] [Related]
32. Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography. Golmohammadi H; Fatemi MH Electrophoresis; 2005 Sep; 26(18):3438-44. PubMed ID: 16110463 [TBL] [Abstract][Full Text] [Related]
33. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices. Wang R; Jiang J; Pan Y; Cao H; Cui Y J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083 [TBL] [Abstract][Full Text] [Related]
34. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
35. Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks. Mattioni BE; Jurs PC J Chem Inf Comput Sci; 2002; 42(2):232-40. PubMed ID: 11911692 [TBL] [Abstract][Full Text] [Related]
36. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods. Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353 [TBL] [Abstract][Full Text] [Related]
37. Genetic algorithm as a variable selection procedure for the simulation of 13C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression. Ghavami R; Najafi A; Sajadi M; Djannaty F J Mol Graph Model; 2008 Sep; 27(2):105-15. PubMed ID: 18450488 [TBL] [Abstract][Full Text] [Related]
38. A novel QSPR study of normalized migration time for drugs in capillary electrophoresis by new descriptors: quantum chemical investigation. Riahi S; Beheshti A; Ganjali MR; Norouzi P Electrophoresis; 2008 Oct; 29(19):4027-35. PubMed ID: 18958895 [TBL] [Abstract][Full Text] [Related]
39. General melting point prediction based on a diverse compound data set and artificial neural networks. Karthikeyan M; Glen RC; Bender A J Chem Inf Model; 2005; 45(3):581-90. PubMed ID: 15921448 [TBL] [Abstract][Full Text] [Related]
40. Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Ren Y; Liu H; Yao X; Liu M Anal Chim Acta; 2007 Apr; 589(1):150-8. PubMed ID: 17397666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]