These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15446938)

  • 1. Polaron-exciton model of resonance energy transfer.
    Markvart T; Greef R
    J Chem Phys; 2004 Oct; 121(13):6401-5. PubMed ID: 15446938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation energy transfer in ion pairs of polymethine cyanine dyes: efficiency and dynamics.
    Ponterini G; Fiorini M; Vanossi D; Tatikolov AS; Momicchioli F
    J Phys Chem A; 2006 Jun; 110(24):7527-38. PubMed ID: 16774193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunneling molecular dynamics in the light of the corpuscular-wave dualism theory.
    Latanowicz L; Filipek P
    J Phys Chem A; 2007 Aug; 111(32):7695-702. PubMed ID: 17629253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of multichromophoric coherent resonance energy transfer: a polaronic quantum master equation approach.
    Jang S
    J Chem Phys; 2011 Jul; 135(3):034105. PubMed ID: 21786985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An activated scheme for resonance energy transfer in conjugated materials.
    Köse ME
    J Chem Phys; 2011 Dec; 135(24):244512. PubMed ID: 22225174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure and temperature dependence of H-atom tunneling in the Debye approximation. Barrier preparation and media reorganization.
    Trakhtenberg LI; Fokeyev AA
    J Phys Chem A; 2007 Sep; 111(38):9509-15. PubMed ID: 17824593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton migration in rigid-rod conjugated polymers: an improved Förster model.
    Hennebicq E; Pourtois G; Scholes GD; Herz LM; Russell DM; Silva C; Setayesh S; Grimsdale AC; Müllen K; Brédas JL; Beljonne D
    J Am Chem Soc; 2005 Apr; 127(13):4744-62. PubMed ID: 15796541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer.
    Braslavsky SE; Fron E; Rodríguez HB; Román ES; Scholes GD; Schweitzer G; Valeur B; Wirz J
    Photochem Photobiol Sci; 2008 Dec; 7(12):1444-8. PubMed ID: 19037495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance energy transfer from a fluorescent dye to a metal nanoparticle.
    Bhowmick S; Saini S; Shenoy VB; Bagchi B
    J Chem Phys; 2006 Nov; 125(18):181102. PubMed ID: 17115730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant coupling of bound excitons with LO phonons in ZnO: excitonic polaron states and Fano interference.
    Xu SJ; Xiong SJ; Shi SL
    J Chem Phys; 2005 Dec; 123(22):221105. PubMed ID: 16375462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport.
    Goldberg O; Meir Y; Dubi Y
    J Phys Chem Lett; 2018 Jun; 9(11):3143-3148. PubMed ID: 29791167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theory-experiment conundrum for proton transfer.
    Peters KS
    Acc Chem Res; 2009 Jan; 42(1):89-96. PubMed ID: 18781778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in Förster resonance energy transfer.
    Yeltik A; Guzelturk B; Hernandez-Martinez PL; Govorov AO; Demir HV
    ACS Nano; 2013 Dec; 7(12):10492-501. PubMed ID: 24274734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient intramolecular energy transfer in single endcapped conjugated polymer molecules in the absence of appreciable spectral overlap.
    Becker K; Lupton JM; Feldmann J; Setayesh S; Grimsdale AC; Müllen K
    J Am Chem Soc; 2006 Jan; 128(3):680-1. PubMed ID: 16417332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphonon transitions in the biomolecular energy transfer dynamics.
    Nalbach P; Thorwart M
    J Chem Phys; 2010 May; 132(19):194111. PubMed ID: 20499955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance energy transfer: spectral overlap, efficiency, and direction.
    Andrews DL; Rodríguez J
    J Chem Phys; 2007 Aug; 127(8):084509. PubMed ID: 17764271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational energy transfer in shocked molecular crystals.
    Hooper J
    J Chem Phys; 2010 Jan; 132(1):014507. PubMed ID: 20078172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.