These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15447011)

  • 1. Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array.
    Gösch M; Serov A; Anhut T; Lasser T; Rochas A; Besse PA; Popovic RS; Blom H; Rigler R
    J Biomed Opt; 2004; 9(5):913-21. PubMed ID: 15447011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule detection sensitivity using planar integrated optics on a chip.
    Yin D; Deamer DW; Schmidt H; Barber JP; Hawkins AR
    Opt Lett; 2006 Jul; 31(14):2136-8. PubMed ID: 16794704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.
    Singh AP; Krieger JW; Buchholz J; Charbon E; Langowski J; Wohland T
    Opt Express; 2013 Apr; 21(7):8652-68. PubMed ID: 23571955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution.
    Wahl M; Koberling F; Patting M; Rahn H; Erdmann R
    Curr Pharm Biotechnol; 2004 Jun; 5(3):299-308. PubMed ID: 15180551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
    Lamb DC; Müller BK; Bräuchle C
    Curr Pharm Biotechnol; 2005 Oct; 6(5):405-14. PubMed ID: 16248814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements.
    Gösch M; Blom H; Anderegg S; Korn K; Thyberg P; Wells M; Lasser T; Rigler R; Magnusson A; Hård S
    J Biomed Opt; 2005; 10(5):054008. PubMed ID: 16292968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector.
    Yamashita T; Liu D; Miki S; Yamamoto J; Haraguchi T; Kinjo M; Hiraoka Y; Wang Z; Terai H
    Opt Express; 2014 Nov; 22(23):28783-9. PubMed ID: 25402117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens.
    Serov A; Rao R; Gösch M; Anhut T; Martin D; Brunner R; Rigler R; Lasser T
    Biosens Bioelectron; 2004 Oct; 20(3):431-5. PubMed ID: 15494221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence correlation microscopy with real-time alignment readout.
    Kaushalya SK; Balaji J; Garai K; Maiti S
    Appl Opt; 2005 Jun; 44(16):3262-5. PubMed ID: 15943261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: multi-confocal fluorescence correlation spectroscopy in living cells using a complementary metal oxide semiconductor-single photon avalanche diode array.
    Kloster-Landsberg M; Tyndall D; Wang I; Walker R; Richardson J; Henderson R; Delon A
    Rev Sci Instrum; 2013 Jul; 84(7):076105. PubMed ID: 23902122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated array of 2-μm antimonide-based single-photon counting devices.
    Diagne MA; Greszik M; Duerr EK; Zayhowski JJ; Manfra MJ; Bailey RJ; Donnelly JP; Turner GW
    Opt Express; 2011 Feb; 19(5):4210-6. PubMed ID: 21369250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.
    Lee MJ; Youn JS; Park KY; Choi WY
    Opt Express; 2014 Feb; 22(3):2511-8. PubMed ID: 24663543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.
    Namekata N; Adachi S; Inoue S
    Opt Express; 2009 Apr; 17(8):6275-82. PubMed ID: 19365453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices.
    Kamei T
    Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors.
    Stuker F; Baltes C; Dikaiou K; Vats D; Carrara L; Charbon E; Ripoll J; Rudin M
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1265-73. PubMed ID: 21317083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of a 2D array PIN photodiode bump bonded to readout IC for the low energy x-ray detector.
    Yuk S; Park SW; Yi Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1986-9. PubMed ID: 17946079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counting single molecules in sub-nanolitre droplets.
    Rane TD; Puleo CM; Liu KJ; Zhang Y; Lee AP; Wang TH
    Lab Chip; 2010 Jan; 10(2):161-4. PubMed ID: 20066242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.