These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 15447126)

  • 1. Transition from a Tomonaga-Luttinger liquid to a fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes.
    Rauf H; Pichler T; Knupfer M; Fink J; Kataura H
    Phys Rev Lett; 2004 Aug; 93(9):096805. PubMed ID: 15447126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures.
    Ishii H; Kataura H; Shiozawa H; Yoshioka H; Otsubo H; Takayama Y; Miyahara T; Suzuki S; Achiba Y; Nakatake M; Narimura T; Higashiguchi M; Shimada K; Namatame H; Taniguchi M
    Nature; 2003 Dec; 426(6966):540-4. PubMed ID: 14654836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of the Tomonaga-Luttinger liquid state in gamma-irradiated carbon nanotube bundles.
    Danilchenko BA; Tripachko NA; Voitsihovska EA; Yaskovets II; Uvarova IY; Sundqvist B
    J Phys Condens Matter; 2013 Nov; 25(47):475302. PubMed ID: 24172218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior.
    Rozhkov AV
    Phys Rev Lett; 2014 Mar; 112(10):106403. PubMed ID: 24679312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced NMR relaxation of Tomonaga-Luttinger liquids and the magnitude of the carbon hyperfine coupling in single-wall carbon nanotubes.
    Kiss A; Pályi A; Ihara Y; Wzietek P; Simon P; Alloul H; Zólyomi V; Koltai J; Kürti J; Dóra B; Simon F
    Phys Rev Lett; 2011 Oct; 107(18):187204. PubMed ID: 22107670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiband One-Dimensional Electronic Structure and Spectroscopic Signature of Tomonaga-Luttinger Liquid Behavior in K_{2}Cr_{3}As_{3}.
    Watson MD; Feng Y; Nicholson CW; Monney C; Riley JM; Iwasawa H; Refson K; Sacksteder V; Adroja DT; Zhao J; Hoesch M
    Phys Rev Lett; 2017 Mar; 118(9):097002. PubMed ID: 28306267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomonaga-Luttinger liquid and Coulomb blockade in multiwall carbon nanotubes under pressure.
    Monteverde M; Garbarino G; Núñez-Regueiro M; Souletie J; Acha C; Jing X; Lu L; Pan ZW; Xie SS; Egger R
    Phys Rev Lett; 2006 Oct; 97(17):176401. PubMed ID: 17155486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Tomonaga-Luttinger-Liquid State on Bi/InSb(001).
    Ohtsubo Y; Kishi J; Hagiwara K; Le Fèvre P; Bertran F; Taleb-Ibrahimi A; Yamane H; Ideta S; Matsunami M; Tanaka K; Kimura S
    Phys Rev Lett; 2015 Dec; 115(25):256404. PubMed ID: 26722934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.
    Chudow JD; Santavicca DF; Prober DE
    Nano Lett; 2016 Aug; 16(8):4909-16. PubMed ID: 27439013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin gap and Luttinger liquid description of the NMR relaxation in carbon nanotubes.
    Dóra B; Gulácsi M; Simon F; Kuzmany H
    Phys Rev Lett; 2007 Oct; 99(16):166402. PubMed ID: 17995273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real space imaging of one-dimensional standing waves: direct evidence for a Luttinger liquid.
    Lee J; Eggert S; Kim H; Kahng SJ; Shinohara H; Kuk Y
    Phys Rev Lett; 2004 Oct; 93(16):166403. PubMed ID: 15525016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au-induced quantum chains on Ge(001)-symmetries, long-range order and the conduction path.
    Blumenstein C; Meyer S; Mietke S; Schäfer J; Bostwick A; Rotenberg E; Matzdorf R; Claessen R
    J Phys Condens Matter; 2013 Jan; 25(1):014015. PubMed ID: 23220774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tomonaga-Luttinger Liquid in the Topological Edge Channel of Multilayer FeSe.
    Zhang H; Zou Q; Li L
    Nano Lett; 2021 Jul; 21(14):6253-6260. PubMed ID: 34255523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Confined Tomonaga-Luttinger Liquid in Mo
    Xia Y; Wang B; Zhang J; Jin Y; Tian H; Ho W; Xu H; Jin C; Xie M
    Nano Lett; 2020 Mar; 20(3):2094-2099. PubMed ID: 32092277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tomonaga-Luttinger liquid features in ballistic single-walled carbon nanotubes: conductance and shot noise.
    Kim NY; Recher P; Oliver WD; Yamamoto Y; Kong J; Dai H
    Phys Rev Lett; 2007 Jul; 99(3):036802. PubMed ID: 17678308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Capacitance Extraction for Carbon Nanotube Interconnects.
    Parkash V; Goel AK
    Nanoscale Res Lett; 2010 Jun; 5(9):1424-1430. PubMed ID: 20730126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field emission from Luttinger liquids and single-wall carbon nanotubes.
    Gogolin AO; Komnik A
    Phys Rev Lett; 2001 Dec; 87(25):256806. PubMed ID: 11736598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulating state and breakdown of Fermi liquid description in molecular-scale single-crystalline wires of gold.
    Chandni U; Kundu P; Singh AK; Ravishankar N; Ghosh A
    ACS Nano; 2011 Oct; 5(10):8398-403. PubMed ID: 21942565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.