These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 15447126)

  • 21. Robust Luttinger Liquid State of 1D Dirac Fermions in a Van der Waals System Nb
    Yao Q; Jung H; Kong K; De C; Kim J; Denlinger JD; Yeom HW
    Nano Lett; 2023 Sep; 23(17):7961-7967. PubMed ID: 37624091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Luttinger-liquid universality in the time evolution after an interaction quench.
    Karrasch C; Rentrop J; Schuricht D; Meden V
    Phys Rev Lett; 2012 Sep; 109(12):126406. PubMed ID: 23005968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Luttinger liquid to Al'tshuler-Aronov transition in disordered, many-channel carbon nanotubes.
    Kar S; Soldano C; Chen L; Talapatra S; Vajtai R; Nayak S; Ajayan PM
    ACS Nano; 2009 Jan; 3(1):207-12. PubMed ID: 19206268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties.
    Shimoda H; Gao B; Tang XP; Kleinhammes A; Fleming L; Wu Y; Zhou O
    Phys Rev Lett; 2002 Jan; 88(1):015502. PubMed ID: 11800961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tomonaga-Luttinger physics in electronic quantum circuits.
    Jezouin S; Albert M; Parmentier FD; Anthore A; Gennser U; Cavanna A; Safi I; Pierre F
    Nat Commun; 2013; 4():1802. PubMed ID: 23653214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping.
    Tian X; Gu Q; Duan J; Chen R; Liu H; Hou Y; Chen J
    Nanoscale; 2018 Apr; 10(14):6288-6293. PubMed ID: 29577139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes.
    Wang S; Zhao S; Shi Z; Wu F; Zhao Z; Jiang L; Watanabe K; Taniguchi T; Zettl A; Zhou C; Wang F
    Nat Mater; 2020 Sep; 19(9):986-991. PubMed ID: 32231241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure control of conducting channels in single-wall carbon nanotube networks.
    Monteverde M; Núñez-Regueiro M
    Phys Rev Lett; 2005 Jun; 94(23):235501. PubMed ID: 16090480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoemission spectroscopy and the unusually robust one-dimensional physics of lithium purple bronze.
    Dudy L; Denlinger JD; Allen JW; Wang F; He J; Hitchcock D; Sekiyama A; Suga S
    J Phys Condens Matter; 2013 Jan; 25(1):014007. PubMed ID: 23221164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of a Fermi-liquid to non-Fermi-liquid quantum phase transition in dimensions d>1.
    Kirkpatrick TR; Belitz D
    Phys Rev Lett; 2012 Feb; 108(8):086404. PubMed ID: 22463549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes.
    Zhang Y; Zhang Q; Schwingenschlögl U
    Nano Lett; 2017 Nov; 17(11):6747-6751. PubMed ID: 29039674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases.
    Yang B; Chen YY; Zheng YG; Sun H; Dai HN; Guan XW; Yuan ZS; Pan JW
    Phys Rev Lett; 2017 Oct; 119(16):165701. PubMed ID: 29099230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terahertz Spectroscopy of Individual Carbon Nanotube Quantum Dots.
    Tsurugaya T; Yoshida K; Yajima F; Shimizu M; Homma Y; Hirakawa K
    Nano Lett; 2019 Jan; 19(1):242-246. PubMed ID: 30537841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge Density Modulation and the Luttinger Liquid State in MoSe
    Xia Y; Zhang J; Jin Y; Ho W; Xu H; Xie M
    ACS Nano; 2020 Aug; 14(8):10716-10722. PubMed ID: 32806039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local spectral properties of Luttinger liquids: scaling versus nonuniversal energy scales.
    Schuricht D; Andergassen S; Meden V
    J Phys Condens Matter; 2013 Jan; 25(1):014003. PubMed ID: 23221026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissipation-driven quantum phase transitions in a Tomonaga-Luttinger liquid electrostatically coupled to a metallic gate.
    Cazalilla MA; Sols F; Guinea F
    Phys Rev Lett; 2006 Aug; 97(7):076401. PubMed ID: 17026252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption.
    Ketolainen T; Havu V; Puska MJ
    J Chem Phys; 2015 Feb; 142(5):054705. PubMed ID: 25662658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of Carbon Nanotube Electronic Properties by Lithium Cation Intercalation.
    Korsun OM; Kalugin ON; Prezhdo OV
    J Phys Chem Lett; 2014 Dec; 5(23):4129-33. PubMed ID: 26278944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Luttinger liquid at the edge of undoped graphene in a strong magnetic field.
    Fertig HA; Brey L
    Phys Rev Lett; 2006 Sep; 97(11):116805. PubMed ID: 17025918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.