These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 15447133)
1. Exotic versus conventional scaling and universality in a disordered bilayer quantum heisenberg antiferromagnet. Sknepnek R; Vojta T; Vojta M Phys Rev Lett; 2004 Aug; 93(9):097201. PubMed ID: 15447133 [TBL] [Abstract][Full Text] [Related]
2. Variational study of the quantum phase transition in the bilayer Heisenberg model with bosonic RVB wavefunction. Liao H; Li T J Phys Condens Matter; 2011 Nov; 23(47):475602. PubMed ID: 22076047 [TBL] [Abstract][Full Text] [Related]
3. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Sandvik AW Phys Rev Lett; 2007 Jun; 98(22):227202. PubMed ID: 17677875 [TBL] [Abstract][Full Text] [Related]
4. Multicritical point in a diluted bilayer Heisenberg quantum antiferromagnet. Sandvik AW Phys Rev Lett; 2002 Oct; 89(17):177201. PubMed ID: 12398701 [TBL] [Abstract][Full Text] [Related]
5. Anomalous Quantum-Critical Scaling Corrections in Two-Dimensional Antiferromagnets. Ma N; Weinberg P; Shao H; Guo W; Yao DX; Sandvik AW Phys Rev Lett; 2018 Sep; 121(11):117202. PubMed ID: 30265096 [TBL] [Abstract][Full Text] [Related]
6. Ferromagnetic phase transition in a Heisenberg fluid: Monte Carlo simulations and Fisher corrections to scaling. Mryglod IM; Omelyan IP; Folk R Phys Rev Lett; 2001 Apr; 86(14):3156-9. PubMed ID: 11290131 [TBL] [Abstract][Full Text] [Related]
7. Infinite-randomness critical point in the two-dimensional disordered contact process. Vojta T; Farquhar A; Mast J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005 [TBL] [Abstract][Full Text] [Related]
8. Evidence for an unconventional universality class from a two-dimensional dimerized quantum heisenberg model. Wenzel S; Bogacz L; Janke W Phys Rev Lett; 2008 Sep; 101(12):127202. PubMed ID: 18851407 [TBL] [Abstract][Full Text] [Related]
9. Quantum versus geometric disorder in a two-dimensional Heisenberg antiferromagnet. Vajk OP; Greven M Phys Rev Lett; 2002 Oct; 89(17):177202. PubMed ID: 12398702 [TBL] [Abstract][Full Text] [Related]
10. Critical exponents of the superfluid-Bose-glass transition in three dimensions. Yao Z; da Costa KP; Kiselev M; Prokof'ev N Phys Rev Lett; 2014 Jun; 112(22):225301. PubMed ID: 24949775 [TBL] [Abstract][Full Text] [Related]
11. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
12. Thermal Critical Points and Quantum Critical End Point in the Frustrated Bilayer Heisenberg Antiferromagnet. Stapmanns J; Corboz P; Mila F; Honecker A; Normand B; Wessel S Phys Rev Lett; 2018 Sep; 121(12):127201. PubMed ID: 30296119 [TBL] [Abstract][Full Text] [Related]
13. Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: evidence for logarithmic corrections to scaling. Sandvik AW Phys Rev Lett; 2010 Apr; 104(17):177201. PubMed ID: 20482133 [TBL] [Abstract][Full Text] [Related]
14. Quantum Critical Scaling of Dirty Bosons in Two Dimensions. Ng R; Sørensen ES Phys Rev Lett; 2015 Jun; 114(25):255701. PubMed ID: 26197135 [TBL] [Abstract][Full Text] [Related]
15. Universal dependence on disorder of two-dimensional randomly diluted and random-bond +/-J Ising models. Hasenbusch M; Toldin FP; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011110. PubMed ID: 18763922 [TBL] [Abstract][Full Text] [Related]
17. High-resolution Monte Carlo study of the multicritical point in the three-dimensional XXZ Heisenberg antiferromagnet. Hu S; Tsai SH; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032118. PubMed ID: 24730801 [TBL] [Abstract][Full Text] [Related]
19. Finite-size scaling for a first-order transition where a continuous symmetry is broken: The spin-flop transition in the three-dimensional XXZ Heisenberg antiferromagnet. Xu J; Tsai SH; Landau DP; Binder K Phys Rev E; 2019 Feb; 99(2-1):023309. PubMed ID: 30934324 [TBL] [Abstract][Full Text] [Related]
20. Quantum phase transition of the randomly diluted heisenberg antiferromagnet on a square lattice. Kato K; Todo S; Harada K; Kawashima N; Miyashita S; Takayama H Phys Rev Lett; 2000 May; 84(18):4204-7. PubMed ID: 10990646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]