These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 15447191)
1. Mechanism of desynchronization in the finite-dimensional Kuramoto model. Maistrenko Y; Popovych O; Burylko O; Tass PA Phys Rev Lett; 2004 Aug; 93(8):084102. PubMed ID: 15447191 [TBL] [Abstract][Full Text] [Related]
2. Chaos in networks of coupled oscillators with multimodal natural frequency distributions. Smith LD; Gottwald GA Chaos; 2019 Sep; 29(9):093127. PubMed ID: 31575123 [TBL] [Abstract][Full Text] [Related]
3. Model reduction for networks of coupled oscillators. Gottwald GA Chaos; 2015 May; 25(5):053111. PubMed ID: 26026323 [TBL] [Abstract][Full Text] [Related]
4. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling. Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712 [TBL] [Abstract][Full Text] [Related]
5. Extended finite-size scaling of synchronized coupled oscillators. Choi C; Ha M; Kahng B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032126. PubMed ID: 24125232 [TBL] [Abstract][Full Text] [Related]
6. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. Roberts DC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336 [TBL] [Abstract][Full Text] [Related]
7. Is there an impact of small phase lags in the Kuramoto model? Omel'chenko OE; Wolfrum M Chaos; 2016 Sep; 26(9):094806. PubMed ID: 27781457 [TBL] [Abstract][Full Text] [Related]
8. Desynchronization in networks of globally coupled neurons with dendritic dynamics. Majtanik M; Dolan K; Tass PA J Biol Phys; 2006 Oct; 32(3-4):307-33. PubMed ID: 19669469 [TBL] [Abstract][Full Text] [Related]
9. Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. Maistrenko Y; Penkovsky B; Rosenblum M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060901. PubMed ID: 25019710 [TBL] [Abstract][Full Text] [Related]
10. Multistable states in a system of coupled phase oscillators with inertia. Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829 [TBL] [Abstract][Full Text] [Related]
11. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Lai YM; Porter MA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012905. PubMed ID: 23944536 [TBL] [Abstract][Full Text] [Related]
12. Plasticity and learning in a network of coupled phase oscillators. Seliger P; Young SC; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872 [TBL] [Abstract][Full Text] [Related]
13. Aging and clustering in globally coupled oscillators. Daido H; Nakanishi K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056206. PubMed ID: 17677147 [TBL] [Abstract][Full Text] [Related]
14. Approximate solution for frequency synchronization in a finite-size Kuramoto model. Wang C; Rubido N; Grebogi C; Baptista MS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062808. PubMed ID: 26764745 [TBL] [Abstract][Full Text] [Related]
15. Phase synchronization in the two-dimensional Kuramoto model: Vortices and duality. Sarkar M; Gupte N Phys Rev E; 2021 Mar; 103(3-1):032204. PubMed ID: 33862679 [TBL] [Abstract][Full Text] [Related]
16. Microscopic correlations in the finite-size Kuramoto model of coupled oscillators. Peter F; Gong CC; Pikovsky A Phys Rev E; 2019 Sep; 100(3-1):032210. PubMed ID: 31639966 [TBL] [Abstract][Full Text] [Related]
17. Intermittent Bellerophon state in frequency-weighted Kuramoto model. Zhou W; Zou Y; Zhou J; Liu Z; Guan S Chaos; 2016 Dec; 26(12):123117. PubMed ID: 28039970 [TBL] [Abstract][Full Text] [Related]
18. Fisher information and criticality in the Kuramoto model of nonidentical oscillators. Kalloniatis AC; Zuparic ML; Prokopenko M Phys Rev E; 2018 Aug; 98(2-1):022302. PubMed ID: 30253611 [TBL] [Abstract][Full Text] [Related]
19. Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold. Ottino-Löffler B; Strogatz SH Phys Rev E; 2016 Jun; 93(6):062220. PubMed ID: 27415267 [TBL] [Abstract][Full Text] [Related]
20. Describing synchronization and topological excitations in arrays of magnetic spin torque oscillators through the Kuramoto model. Flovik V; Macià F; Wahlström E Sci Rep; 2016 Sep; 6():32528. PubMed ID: 27580938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]