These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Dislocation lines as the precursor of the melting of crystalline solids observed in Monte Carlo simulations. Gómez L; Dobry A; Geuting Ch; Diep HT; Burakovsky L Phys Rev Lett; 2003 Mar; 90(9):095701. PubMed ID: 12689238 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of the melting mechanisms of perfect and imperfect crystals of dimethylnitramine. Zheng L; Rice BM; Thompson DL J Phys Chem B; 2007 Mar; 111(11):2891-5. PubMed ID: 17388449 [TBL] [Abstract][Full Text] [Related]
8. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions. Nguyen LD; Warner DH Phys Rev Lett; 2012 Jan; 108(3):035501. PubMed ID: 22400757 [TBL] [Abstract][Full Text] [Related]
9. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture. Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG Sci Rep; 2014 Nov; 4():6981. PubMed ID: 25382029 [TBL] [Abstract][Full Text] [Related]
10. Anisotropic shock responses of nanoporous Al by molecular dynamics simulations. Tian X; Ma K; Ji G; Cui J; Liao Y; Xiang M PLoS One; 2021; 16(3):e0247172. PubMed ID: 33730074 [TBL] [Abstract][Full Text] [Related]
11. Melting line of the Lennard-Jones system, infinite size, and full potential. Mastny EA; de Pablo JJ J Chem Phys; 2007 Sep; 127(10):104504. PubMed ID: 17867758 [TBL] [Abstract][Full Text] [Related]
12. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study. Zhou T; Lou J; Zhang Y; Song H; Huang F Phys Chem Chem Phys; 2016 Jul; 18(26):17627-45. PubMed ID: 27307079 [TBL] [Abstract][Full Text] [Related]
14. Computer simulation of epitaxial nucleation of a crystal on a crystalline surface. Mithen JP; Sear RP J Chem Phys; 2014 Feb; 140(8):084504. PubMed ID: 24588182 [TBL] [Abstract][Full Text] [Related]
15. Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled. Malek SM; Morrow GP; Saika-Voivod I J Chem Phys; 2015 Mar; 142(12):124506. PubMed ID: 25833595 [TBL] [Abstract][Full Text] [Related]
16. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa. Li J; Zhou X; Li J; Wu Q; Cai L; Dai C Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628 [TBL] [Abstract][Full Text] [Related]
17. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory. Chen B; Kim H; Keasler SJ; Nellas RB J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920 [TBL] [Abstract][Full Text] [Related]
18. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations. Wang BT; Shao JL; Zhang GC; Li WD; Zhang P J Phys Condens Matter; 2010 Nov; 22(43):435404. PubMed ID: 21403328 [TBL] [Abstract][Full Text] [Related]
19. Melting mechanisms at the limit of superheating. Jin ZH; Gumbsch P; Lu K; Ma E Phys Rev Lett; 2001 Jul; 87(5):055703. PubMed ID: 11497785 [TBL] [Abstract][Full Text] [Related]
20. Energy landscapes of quantum Lennard-Jones solids. Chakravarty C J Phys Chem A; 2011 Jun; 115(25):7028-33. PubMed ID: 21456608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]