These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15447489)

  • 1. Brownian dynamics simulations of Laponite colloid suspensions.
    Odriozola G; Romero-Bastida M; Guevara-Rodríguez Fde J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021405. PubMed ID: 15447489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging in a Laponite colloidal suspension: a Brownian dynamics simulation study.
    Mossa S; De Michele C; Sciortino F
    J Chem Phys; 2007 Jan; 126(1):014905. PubMed ID: 17212517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flocculated Laponite-PEG/PEO dispersions with monovalent salt, a SAXS and simulation study.
    Thuresson A; Segad M; Turesson M; Skepö M
    J Colloid Interface Sci; 2016 Mar; 466():330-42. PubMed ID: 26748065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic light scattering study and DLVO analysis of physicochemical interactions in colloidal suspensions of charged disks.
    Saha D; Bandyopadhyay R; Joshi YM
    Langmuir; 2015 Mar; 31(10):3012-20. PubMed ID: 25726709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective interaction of charged platelets in aqueous solution: investigations of colloid laponite suspensions by static light scattering and small-angle x-ray scattering.
    Li L; Harnau L; Rosenfeldt S; Ballauff M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051504. PubMed ID: 16383608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-scale Brownian dynamics of suspensions of charged nanoparticles including electrostatic and hydrodynamic interactions.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    J Chem Phys; 2009 Dec; 131(23):234105. PubMed ID: 20025312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Double-Layer Effects on the Brownian Diffusivity and Aggregation Rate of Laponite Clay Particles.
    Tawari SL; Koch DL; Cohen C
    J Colloid Interface Sci; 2001 Aug; 240(1):54-66. PubMed ID: 11446786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods.
    Tao YG; den Otter WK; Padding JT; Dhont JK; Briels WJ
    J Chem Phys; 2005 Jun; 122(24):244903. PubMed ID: 16035812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.
    Tudisca V; Bruni F; Scoppola E; Angelini R; Ruzicka B; Zulian L; Soper AK; Ricci MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032301. PubMed ID: 25314440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulation of the crystallization dynamics of charged colloidal particles.
    Gu L; Xu S; Sun Z; Wang JT
    J Colloid Interface Sci; 2010 Oct; 350(2):409-16. PubMed ID: 20673671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.
    Contreras-Aburto C; Báez CA; Méndez-Alcaraz JM; Castañeda-Priego R
    J Chem Phys; 2014 Jun; 140(24):244116. PubMed ID: 24985627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of effective charges in the electrophoresis of highly charged colloids.
    Chatterji A; Horbach J
    J Phys Condens Matter; 2010 Dec; 22(49):494102. PubMed ID: 21406768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging of rotational diffusion in colloidal gels and glasses.
    Jabbari-Farouji S; Wegdam GH; Bonn D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041401. PubMed ID: 23214583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of nanoparticle shape on the drying of colloidal suspensions.
    Hodges CS; Ding Y; Biggs S
    J Colloid Interface Sci; 2010 Dec; 352(1):99-106. PubMed ID: 20825947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonaqueous suspensions of laponite and montmorillonite.
    Leach ES; Hopkinson A; Franklin K; van Duijneveldt JS
    Langmuir; 2005 Apr; 21(9):3821-30. PubMed ID: 15835943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalation of cationic peptides within Laponite layered clay minerals in aqueous suspensions: The effect of stoichiometry and charge distance matching.
    Jansson M; Lenton S; Plivelic TS; Skepö M
    J Colloid Interface Sci; 2019 Dec; 557():767-776. PubMed ID: 31569056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active colloidal suspensions exhibit polar order under gravity.
    Enculescu M; Stark H
    Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting in two-dimensional Yukawa systems: a Brownian dynamics simulation.
    Qi WK; Wang Z; Han Y; Chen Y
    J Chem Phys; 2010 Dec; 133(23):234508. PubMed ID: 21186876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving Salt-Induced Agglomeration of Laponite Suspensions Using X-ray Photon Correlation Spectroscopy and Molecular Dynamics Simulations.
    Mohammed S; Liu M; Zhang Q; Narayanan S; Zhang F; Gadikota G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.