These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 15447503)
1. Periodic buckling of smectic-A tubular filaments in an isotropic phase. Todorokihara M; Iwata Y; Naito H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021701. PubMed ID: 15447503 [TBL] [Abstract][Full Text] [Related]
2. Numerical study of stretched smectic-A elastomer sheets. Brown AW; Adams JM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012512. PubMed ID: 23944479 [TBL] [Abstract][Full Text] [Related]
5. Transition Helmholtz free energy, entropy, and heat capacity of free-standing smectic films in water: a mean-field treatment. Śliwa I; Zakharov AV J Chem Phys; 2014 Nov; 141(19):194706. PubMed ID: 25416904 [TBL] [Abstract][Full Text] [Related]
6. Stretching of buckled filaments by thermal fluctuations. Baczynski K; Lipowsky R; Kierfeld J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061914. PubMed ID: 18233876 [TBL] [Abstract][Full Text] [Related]
7. Smectic filaments in colloidal suspensions of rods. Frenkel D; Schilling T Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041606. PubMed ID: 12443215 [TBL] [Abstract][Full Text] [Related]
8. Numerical modelling of long flexible fibers in homogeneous isotropic turbulence. Sulaiman M; Climent E; Delmotte B; Fede P; Plouraboué F; Verhille G Eur Phys J E Soft Matter; 2019 Oct; 42(10):132. PubMed ID: 31595356 [TBL] [Abstract][Full Text] [Related]
9. A mechanics model of microtubule buckling in living cells. Li T J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758 [TBL] [Abstract][Full Text] [Related]
10. Smectic, nematic, and isotropic phases in binary mixtures of thin and thick hard spherocylinders. Cinacchi G; Martínez-Ratón Y; Mederos L; Velasco E J Chem Phys; 2006 Jun; 124(23):234904. PubMed ID: 16821950 [TBL] [Abstract][Full Text] [Related]
11. Filaments in the twist-grain-boundary smectic-A phase. Lejček L; Novotná V; Glogarová M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032505. PubMed ID: 26465488 [TBL] [Abstract][Full Text] [Related]
12. Study of the isotropic to smectic-A phase transition in liquid crystal and acetone binary mixtures. Sigdel KP; Iannacchione GS J Chem Phys; 2010 Nov; 133(17):174501. PubMed ID: 21054045 [TBL] [Abstract][Full Text] [Related]
13. AFM study of defect-induced depressions of the smectic-A/air interface. Designolle V; Herminghaus S; Pfohl T; Bahr Ch Langmuir; 2006 Jan; 22(1):363-8. PubMed ID: 16378446 [TBL] [Abstract][Full Text] [Related]
14. Mechanical model for filament buckling and growth by phase ordering. Rey AD; Abukhdeir NM Langmuir; 2008 Feb; 24(3):662-5. PubMed ID: 18179274 [TBL] [Abstract][Full Text] [Related]
15. Dynamic buckling of morphoelastic filaments. Goldstein RE; Goriely A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):010901. PubMed ID: 16907052 [TBL] [Abstract][Full Text] [Related]
20. Force-chain buckling in granular media: a structural mechanics perspective. Hunt GW; Tordesillas A; Green SC; Shi J Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1910):249-62. PubMed ID: 19948554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]